Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 5760, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459073

ABSTRACT

Stroke is a leading cause of death and disability worldwide, and early diagnosis and prompt medical intervention are thus crucial. Frequent monitoring of stroke patients is also essential to assess treatment efficacy and detect complications earlier. While computed tomography (CT) and magnetic resonance imaging (MRI) are commonly used for stroke diagnosis, they cannot be easily used onsite, nor for frequent monitoring purposes. To meet those requirements, an electromagnetic imaging (EMI) device, which is portable, non-invasive, and non-ionizing, has been developed. It uses a headset with an antenna array that irradiates the head with a safe low-frequency EM field and captures scattered fields to map the brain using a complementary set of physics-based and data-driven algorithms, enabling quasi-real-time detection, two-dimensional localization, and classification of strokes. This study reports clinical findings from the first time the device was used on stroke patients. The clinical results on 50 patients indicate achieving an overall accuracy of 98% in classification and 80% in two-dimensional quadrant localization. With its lightweight design and potential for use by a single para-medical staff at the point of care, the device can be used in intensive care units, emergency departments, and by paramedics for onsite diagnosis.


Subject(s)
Brain , Stroke , Humans , Brain/diagnostic imaging , Electromagnetic Phenomena , Head , Stroke/diagnostic imaging , Tomography, X-Ray Computed/methods , Magnetic Resonance Imaging
2.
Stud Health Technol Inform ; 310: 865-869, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38269932

ABSTRACT

The lack of transparency and explainability hinders the clinical adoption of Machine learning (ML) algorithms. While explainable artificial intelligence (XAI) methods have been proposed, little research has focused on the agreement between these methods and expert clinical knowledge. This study applies current state-of-the-art explainability methods to clinical decision support algorithms developed for Electronic Medical Records (EMR) data to analyse the concordance between these factors and discusses causes for identified discrepancies from a clinical and technical perspective. Important factors for achieving trustworthy XAI solutions for clinical decision support are also discussed.


Subject(s)
Artificial Intelligence , Electronic Health Records , Algorithms , Knowledge , Machine Learning
3.
IEEE Trans Biomed Eng ; 69(4): 1512-1523, 2022 04.
Article in English | MEDLINE | ID: mdl-34694991

ABSTRACT

A modified distorted Born iterative method (DBIM), which includes clustering of reconstructed electrical properties (EPs) after certain iterations, is presented for brain imaging aiming at stroke detection and classification. For this approach to work, a rough estimation of number of different materials (or bio-tissues) in the imaged domain and their corresponding rough dielectric properties (permittivity and conductivity) are needed as a prior information. The proposed adaptive clustering DBIM (AC-DBIM) is compared with three conventional methods (DBIM, multiplicative regularized contrast source inversion (MR-CSI), and CSI for shape and location reconstruction (SL-CSI)) in two-dimensional scenario on a head phantom and numerical head model with different strokes. Three-dimensional simulations are also conducted to indicate the suitability of AC-DBIM in real-life brain imaging. Lastly, the proposed algorithm is assessed using a clinical electromagnetic head scanner developed on phantoms. The simulation and experimental results show superiority of AC-DBIM compared to conventional methods. AC-DBIM achieves significant improvement in the size and shape reconstruction and reduction in errors and standard deviation of the reconstructed εr and σ at clinical scenarios compared with conventional DBIM.


Subject(s)
Microwaves , Stroke , Brain/diagnostic imaging , Cluster Analysis , Humans , Stroke/diagnostic imaging , Tomography/methods
4.
Front Neurol ; 12: 765412, 2021.
Article in English | MEDLINE | ID: mdl-34777233

ABSTRACT

Introduction: Electromagnetic imaging is an emerging technology which promises to provide a mobile, and rapid neuroimaging modality for pre-hospital and bedside evaluation of stroke patients based on the dielectric properties of the tissue. It is now possible due to technological advancements in materials, antennae design and manufacture, rapid portable computing power and network analyses and development of processing algorithms for image reconstruction. The purpose of this report is to introduce images from a novel, portable electromagnetic scanner being trialed for bedside and mobile imaging of ischaemic and haemorrhagic stroke. Methods: A prospective convenience study enrolled patients (January 2020 to August 2020) with known stroke to have brain electromagnetic imaging, in addition to usual imaging and medical care. The images are obtained by processing signals from encircling transceiver antennae which emit and detect low energy signals in the microwave frequency spectrum between 0.5 and 2.0 GHz. The purpose of the study was to refine the imaging algorithms. Results: Examples are presented of haemorrhagic and ischaemic stroke and comparison is made with CT, perfusion and MRI T2 FAIR sequence images. Conclusion: Due to speed of imaging, size and mobility of the device and negligible environmental risks, development of electromagnetic scanning scanner provides a promising additional modality for mobile and bedside neuroimaging.

5.
IEEE Trans Biomed Circuits Syst ; 14(5): 1097-1107, 2020 10.
Article in English | MEDLINE | ID: mdl-32956066

ABSTRACT

A wideband wearable electromagnetic (EM) head imaging system for brain stroke detection is presented. The proposed system aims at overcoming the challenges of size, rigidity, and complex structures of existing systems. The proposed system is built into a light-weight and compact imaging platform, which integrates a 16-element antenna array into a highly flexible custom-made wearable cap made of a cost-effective and robust room-temperature-vulcanizing (RTV) silicone. The system mitigates the mismatch between the skin and antenna array by introducing a flexible high-permittivity matching layer. The utilized compact antenna demonstrates wideband operational frequency over 0.6-2.5 GHz with a low signal distortion, safe values of SAR, and unidirectional radiations. The system is experimentally validated on realistic head phantoms. The polar sensitivity encoding (PSE) image processing algorithm is utilized to generate 2D images of different testing scenarios. The obtained images of a stroke-like target inside the head phantoms demonstrate the merits and feasibility of the system for preclinical trials.


Subject(s)
Diagnostic Imaging , Head , Electromagnetic Phenomena , Head/diagnostic imaging , Microwaves , Phantoms, Imaging
6.
IEEE Trans Biomed Circuits Syst ; 14(3): 452-462, 2020 06.
Article in English | MEDLINE | ID: mdl-32070996

ABSTRACT

The increasing utilization of cerebrospinal fluid (CSF) in early detection of Alzheimer's disease (AD) is attributed to the change of Amyloid- ß proteins. Since, the brain is suspended in CSF, changes of Amyloid- ß proteins in CSF reflect a pathophysiological variation of the brain due to AD. However, the correlation between Amyloid- ß proteins and the dielectric properties (DPs) of CSF is still an open question. This paper reports the characterized DPs of CSF collected from canines using lumbar punctures. The CSF samples from canines show a strong correlation with respect to human in terms of the loss tangent, which indicates suitability of using canines as translational primates. Amyloid- ß [ Aß(1-40) and Aß(1-42)] proteins associated with AD were added to CSF samples in order to emulate AD condition. The results of emulated AD condition suggest a decrease in the relative permittivity and increase in the loss tangent. To detect changes in the loss tangent of CSF, which combines both relative permittivity and conductivity, a developed sensor is proposed. The designed sensor consists of a voltage controlled oscillator (VCO) and implantable antenna, which exhibits a wideband and low quality factor to be stable with respect to changes in the loss tangent of CSF. The measurements of the received power levels from the sensor in different liquid-based phantoms having different loss tangent values were used to correlate changes in the loss tangent. The developed correlation model is able to predict the loss tangent based on the received power level, which can be used to detect changes in the loss tangent of CSF due to AD. Consequently, this approach could be used as an early diagnosis of AD.


Subject(s)
Cerebrospinal Fluid/chemistry , Electric Conductivity , Electronics, Medical/instrumentation , Prostheses and Implants , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Animals , Brain Chemistry , Dogs , Equipment Design , Humans
7.
IEEE Trans Biomed Eng ; 67(9): 2462-2472, 2020 09.
Article in English | MEDLINE | ID: mdl-31902750

ABSTRACT

This article presents an efficient and low-cost near-field probe, designed for early-stage skin cancer detection. Thanks to a tapered section, the device can achieve a sharp concentration of electric field at its tip. Moreover, the adoption of substrate integrated waveguide (SIW) technology ensures an easy and cheap fabrication process. The probe is realized on a high dielectric constant substrate (Rogers RO3210) that provides a good impedance matching with the skin, thus allowing to use the device in direct contact with it. This feature is essential to ensure that the proposed system can be adopted as a practical and effective tool for a fast scanning of many suspected skin regions. The probe is designed to operate at around 40 GHz in order to achieve the penetration depth required to detect small cancer lumps in the skin, while preventing the fields from interacting with the underlying biological tissues. Furthermore, the concept of detection depth is defined with the goal of introducing a metric that is more suitable than the penetration depth to express the notion of the maximum distance from the skin surface at which a tumor can be detected. Thanks to a differential imaging algorithm, the probe is capable of working on every different skin types and body region. The proposed device has a lateral sensitivity and detection depth of 0.2 and 0.55 mm respectively. The probe was designed and tested through simulations in CST Microwave Studio, as well as fabricated and validated through measurements on an artificial human skin phantom.


Subject(s)
Algorithms , Skin Neoplasms , Skin , Diagnostic Imaging , Humans , Phantoms, Imaging , Skin Neoplasms/diagnosis
8.
Sensors (Basel) ; 19(5)2019 Feb 27.
Article in English | MEDLINE | ID: mdl-30818868

ABSTRACT

A three-dimensional (3D) electromagnetic torso scanner system is presented. This system aims at providing a complimentary/auxiliary imaging modality to supplement conventional imaging devices, e.g., ultrasound, computerized tomography (CT) and magnetic resonance imaging (MRI), for pathologies in the chest and upper abdomen such as pulmonary abscess, fatty liver disease and renal cancer. The system is comprised of an array of 14 resonance-based reflector (RBR) antennas that operate from 0.83 to 1.9 GHz and are located on a movable flange. The system is able to scan different regions of the chest and upper abdomen by mechanically moving the antenna array to different positions along the long axis of the thorax with an accuracy of about 1 mm at each step. To verify the capability of the system, a three-dimensional imaging algorithm is proposed. This algorithm utilizes a fast frequency-based microwave imaging method in conjunction with a slice interpolation technique to generate three-dimensional images. To validate the system, pulmonary abscess was simulated within an artificial torso phantom. This was achieved by injecting an arbitrary amount of fluid (e.g., 30 mL of water), into the lungs regions of the torso phantom. The system could reliably and reproducibly determine the location and volume of the embedded target.

9.
IEEE Trans Biomed Circuits Syst ; 13(1): 124-134, 2019 02.
Article in English | MEDLINE | ID: mdl-30369449

ABSTRACT

Given the increased interest in a fast, portable, and on-spot medical diagnostic tool that enables early diagnosis for patients with brain stroke, a new approach of a wearable electromagnetic head imaging system based on the polymer material is proposed. A flexible low-profile, wideband, and unidirectional antenna array with electromagnetic band gap (EBG) and metamaterial (MTM) unit cells reflector is utilized. The designed antenna consists of a 4 × 4 radiating patch loaded with symmetrical extended open-ended U-slots and fed by combination of series and corporate transmission lines. A mushroom-like 10-EBG unit cell arrays are arranged around the feeding network to reduce surface waves, whereas 4 × 4 MTM unit cells are placed on the back-side of the antenna to enable unidirectional radiation. The antenna is designed and embedded on a multilayer low cost, low loss, transparent, and robust polymer poly-di-methyl-siloxane (PDMS) substrate and optimized to operate in contact with the human head. The simulated and measured results show that the antenna has a fractional bandwidth of 53.8% (1.16-1.94 GHz), more than 80% of radiation efficiency, and satisfactory field penetration in the head tissues with a safe specific absorption rate. An eight-element array is then configured on 300 × 360 × 4.1 mm3 PDMS material covering an average human head size and used as a worn part of the imaging system. A realistic-shaped 3-D specific anthropomorphic mannequin (SAM) head phantom is used to verify the performance of the designed array. The imaging results indicate the possibility of using the designed conformal array to detect a bleeding inside the brain using a confocal image algorithm.


Subject(s)
Brain/pathology , Electromagnetic Radiation , Phantoms, Imaging , Stroke/diagnosis , Wearable Electronic Devices , Computer Simulation , Head , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Microwaves , Numerical Analysis, Computer-Assisted , Polymers , Reproducibility of Results
10.
IEEE Trans Biomed Eng ; 65(1): 4-14, 2018 01.
Article in English | MEDLINE | ID: mdl-29267160

ABSTRACT

OBJECTIVE: Near-field inductive-coupling link can establish a reliable power source to a batteryless implantable medical device based on Faraday's law of induction. METHODS: In this paper, the design, modeling, and experimental verification of an inductive-coupling link between an off-body loop antenna and a 0.9  three-dimensional (3-D) bowtie brain implantable antenna is presented. To ensure reliability of the design, the implantable antenna is embedded in the cerebral spinal fluid of a realistic human head model. Exposure, temperature, and propagation simulations of the near electromagnetic fields in a frequency-dispersive head model were carried out to comply with the IEEE safety standards. Concertedly, a fabrication process for the implantable antenna is proposed, which can be extended to devise and miniaturize different 3-D geometric shapes. RESULTS: The performance of the proposed inductive link was tested in a biological environment; in vitro measurements of the fabricated prototypes were carried in a pig's head and piglet. The measurements of the link gain demonstrated   in the pig's head and   in piglet. SIGNIFICANCE: The in vitro measurement results showed that the proposed 3-D implantable antenna is suitable for integration with a miniaturized batteryless brain implantable medical device (BIMD).


Subject(s)
Brain/physiology , Head/physiology , Models, Biological , Neural Prostheses , Signal Processing, Computer-Assisted/instrumentation , Animals , Computer Simulation , Electromagnetic Fields , Humans , Phantoms, Imaging , Prosthesis Design , Swine
11.
Opt Express ; 25(20): 24486-24500, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-29041393

ABSTRACT

A method is introduced to miniaturize invisibility cloaks by 50% using wave tailoring and finite/non-zero wave impedance of double near zero (DNZ) slabs. Unlike previous works, which use thick dielectric matching layers to miniaturize internal cloaks, the proposed technique is applied to both internal and external cylindrical cloaks using a thin and short DNZ slab to change cloaks' shapes to half-cylinder shells. Moreover, sets of structures are introduced for the half sized cloaks to enable using feasible-to-fabricate structures with the help of a rigorous theoretical analysis, which is validated via full-wave simulations. All of the presented results show that the proposed half cloaks can function perfectly well. The sensitivity of half-sized cloaks to the length and material properties of the DNZ slab is investigated to find the shortest length and the highest values of the permittivity and permeability for the slab to have small yet realizable structures. The analysis shows that slabs with length as small as the diameter of the cloaks and constitutive parameters (permittivity and permeability) as high asεslab=µslab=0.1-0.1iand εslab=µslab=0.05-0.04i for half-sized external cloaks and half-sized internal cloaks, respectively, can still considerably reduce the scattered fields. The effect of the loss and incident angle of the field on the performance of the miniaturized cloaks are also analyzed.

12.
Bioelectromagnetics ; 38(6): 474-481, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28431194

ABSTRACT

Developing microwave systems for biomedical applications requires accurate dielectric properties of biological tissues for reliable modeling before prototyping and subject testing. Dielectric properties of tissues decrease with age due to the change in their water content, but there are no detailed age-dependent data, especially for young tissue-like newborns, in the literature. In this article, an age-dependent formula to predict the dielectric properties of biological tissues was derived. In the proposed method, the variation of water concentration in each type of tissue as a function of age was used to calculate its relative permittivity and conductivity. The derived formula shows that the concentration of water in each tissue type can be modeled as a negative exponential function of age. The dielectric properties of each tissue type can then be calculated as a function of the dielectric properties of water and dielectric properties of the organ forming the tissue and its water concentration. The derived formula was used to generate the dielectric properties of several types of human tissues at different ages using the dielectric properties of a human adult. Moreover, the formula was validated on pig tissues of different ages. A close agreement was achieved between the calculated and measured data with a maximum difference of only 2%. Bioelectromagnetics. 38:474-481, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Aging/metabolism , Models, Biological , Adult , Animals , Child , Electric Impedance , Female , Gray Matter/metabolism , Humans , Infant , Male , Middle Aged , Swine , Water/metabolism , White Matter/metabolism
13.
Bioelectromagnetics ; 37(8): 549-556, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27657539

ABSTRACT

Dielectric properties of dead Greyhound female dogs' brain tissues at different ages were measured at room temperature across the frequency range of 0.3-3 GHz. Measurements were made on excised tissues, in vitro in the laboratory, to carry out dielectric tests on sample tissues. Each dataset for a brain tissue was parametrized using the Cole-Cole expression, and the relevant Cole-Cole parameters for four tissue types are provided. A comparison was made with the database available in literature for other animals and human brain tissue. Results of two types of tissues (white matter and skull) showed systematic variation in dielectric properties as a function of animal age, whereas no significant change related to age was noticed for other tissues. Results provide critical information regarding dielectric properties of animal tissues for a realistic animal head model that can be used to verify the validity and reliability of a microwave head scanner for animals prior to testing on live animals. Bioelectromagnetics. 37:549-556, 2016. © 2016 Wiley Periodicals, Inc.

SELECTION OF CITATIONS
SEARCH DETAIL
...