Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(9): 090504, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32202873

ABSTRACT

The quantum approximate optimization algorithm (QAOA) has rapidly become a cornerstone of contemporary quantum algorithm development. Despite a growing range of applications, only a few results have been developed towards understanding the algorithm's ultimate limitations. Here we report that QAOA exhibits a strong dependence on a problem instances constraint to variable ratio-this problem density places a limiting restriction on the algorithms capacity to minimize a corresponding objective function (and hence solve optimization problem instances). Such reachability deficits persist even in the absence of barren plateaus and are outside of the recently reported level-1 QAOA limitations. These findings are among the first to determine strong limitations on variational quantum approximate optimization.

2.
Sci Rep ; 3: 1235, 2013.
Article in English | MEDLINE | ID: mdl-23390585

ABSTRACT

Simulating quantum circuits using classical computers lets us analyse the inner workings of quantum algorithms. The most complete type of simulation, strong simulation, is believed to be generally inefficient. Nevertheless, several efficient strong simulation techniques are known for restricted families of quantum circuits and we develop an additional technique in this article. Further, we show that strong simulation algorithms perform another fundamental task: solving search problems. Efficient strong simulation techniques allow solutions to a class of search problems to be counted and found efficiently. This enhances the utility of strong simulation methods, known or yet to be discovered, and extends the class of search problems known to be efficiently simulable. Relating strong simulation to search problems also bounds the computational power of efficiently strongly simulable circuits; if they could solve all problems in P this would imply that all problems in NP and #P could be solved in polynomial time.

3.
Nat Chem ; 2(2): 106-11, 2010 Feb.
Article in English | MEDLINE | ID: mdl-21124400

ABSTRACT

Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.


Subject(s)
Computers , Quantum Theory , Algorithms , Hydrogen/chemistry , Optical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...