Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 32(4): 1003-1015, 2018 04.
Article in English | MEDLINE | ID: mdl-29158557

ABSTRACT

Dendritic cells (DCs) have a key role in regulating tumor immunity, tumor cell growth and drug resistance. We hypothesized that multiple myeloma (MM) cells might recruit and reprogram DCs to a tumor-permissive phenotype by changes within their microRNA (miRNA) network. By analyzing six different miRNA-profiling data sets, miR-29b was identified as the only miRNA upregulated in normal mature DCs and significantly downregulated in tumor-associated DCs. This finding was validated in primary DCs co-cultured in vitro with MM cell lines and in primary bone marrow DCs from MM patients. In DCs co-cultured with MM cells, enforced expression of miR-29b counteracted pro-inflammatory pathways, including signal transducer and activator of transcription 3 and nuclear factor-κB, and cytokine/chemokine signaling networks, which correlated with patients' adverse prognosis and development of bone disease. Moreover, miR-29b downregulated interleukin-23 in vitro and in the SCID-synth-hu in vivo model, and antagonized a Th17 inflammatory response. All together, these effects translated into strong anti-proliferative activity and reduction of genomic instability of MM cells. Our study demonstrates that MM reprograms the DCs functional phenotype by downregulating miR-29b whose reconstitution impairs DCs ability to sustain MM cell growth and survival. These results underscore miR-29b as an innovative and attractive candidate for miRNA-based immune therapy of MM.


Subject(s)
Dendritic Cells/pathology , Inflammation/genetics , MicroRNAs/genetics , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Animals , Bone Marrow/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Down-Regulation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Mice , Mice, SCID , NF-kappa B/genetics , STAT3 Transcription Factor/genetics , Up-Regulation/genetics
2.
Leukemia ; 29(11): 2173-83, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25987254

ABSTRACT

Interferon regulatory factor 4 (IRF4) is an attractive therapeutic target in multiple myeloma (MM). We here report that expression of IRF4 mRNA inversely correlates with microRNA (miR)-125b in MM patients. Moreover, we provide evidence that miR-125b is downregulated in TC2/3 molecular MM subgroups and in established cell lines. Importantly, constitutive expression of miR-125b-5p by lentiviral vectors or transfection with synthetic mimics impaired growth and survival of MM cells and overcame the protective role of bone marrow stromal cells in vitro. Apoptotic and autophagy-associated cell death were triggered in MM cells on miR-125b-5p ectopic expression. Importantly, we found that the anti-MM activity of miR-125b-5p was mediated via direct downregulation of IRF4 and its downstream effector BLIMP-1. Moreover, inhibition of IRF4 translated into downregulation of c-Myc, caspase-10 and cFlip, relevant IRF4-downstream effectors. Finally, in vivo intra-tumor or systemic delivery of formulated miR-125b-5p mimics against human MM xenografts in severe combined immunodeficient/non-obese diabetic mice induced significant anti-tumor activity and prolonged survival. Taken together, our findings provide evidence that miR-125b, differently from other hematologic malignancies, has tumor-suppressor activity in MM. Furthermore, our data provide proof-of-concept that synthetic miR-125b-5p mimics are promising anti-MM agents to be validated in early clinical trials.


Subject(s)
Interferon Regulatory Factors/genetics , MicroRNAs/physiology , Multiple Myeloma/therapy , Animals , Apoptosis , Autophagy , Cell Line, Tumor , Cell Proliferation , Genes, Tumor Suppressor/physiology , Humans , Male , Mice , Multiple Myeloma/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...