Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 10: 1257172, 2023.
Article in English | MEDLINE | ID: mdl-37674886

ABSTRACT

Introduction: Oxidative stress plays an essential role in the pathogenesis of chronic diseases. Disrupting the Keap1-Nrf2 pathway by binding Keap1 is identified as a potential strategy to prevent oxidative stress-related chronic diseases. Therefore, of special interest is the utilization of dietary antioxidations from citrus, including narirutin, naringenin, hesperetin, hesperidin, naringin, neohesperidin dihydrochalcone, neohesperidin, and nobiletin, has been exploited as a prospective way to treat or prevent several human pathologies as Keap1-Nrf2 inhibitors for modulation of antioxidant properties. Methods: To probe into the structural foundation of the molecular identification of citrus-derived antioxidations, we calculated the antioxidant responsive element activation ability of citrus-derived flavonoids after binding with Keap1. Also, the quantum chemistry properties and binding mode were performed theoretically with frontier molecular orbitals, molecular electrostatic potential analysis, molecular docking, and absorption, distribution, metabolism, excretion (ADME) calculation. Results and discussion: Experimental findings combining computational assays revealed that the tested citrus-derived flavonoids can be grouped into strong agonists and weak agonists. The citrus-derived antioxidations were well housed in the bound zone of Keap1 via stable hydrogen bonding and hydrophobic interaction. Eventually, three of eight antioxidations were identified after ADME and physicochemical evaluations. The citrus-derived flavonoids were identified as potential dietary antioxidants of the Keap1-Nrf2 interaction, and can be used to improve oxidative stress-related chronic diseases.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 282: 121659, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-35930945

ABSTRACT

To understand the binding mechanism of a mixture of chiral phenothrin with human serum albumin (HSA), we used multi-spectroscopy, including steady-state fluorescence spectroscopic titration, three-dimensional fluorescence spectroscopy, circular dichroism, and FTIR spectra to explore the precise interactions between the complex. Based on the modified Stern-Volmer equation, the binding constant (Ka) was calculated under three temperatures, which revealed that phenothrin interacts with HSA through a static quenching mechanism. The thermodynamic parameters including enthalpy change (ΔH) and entropy change (ΔS) were determined by fitting the experimental data with van't Hoff equation, which indicates that electrostatic force and hydrogen bonds dominate the interplay in the phenothrin-HSA complex. Circular dichroism and FTIR showed the addition of phenothrin changed the secondary structure of proteins, in which the α-helicity decreased from 52.37% in free HSA to 50.02%. The esterase-like activity was reduced with the increase of phenothrin concentration, which may be attributed to the perturbated senior structure of HSA. Competitive displacement experiments confirmed that phenothrin inserted into the subdomain IIA (site I) of HSA. Several computational approaches such as molecular docking, frontier molecular orbital analysis, and electrostatic potential analysis were utilized to probe into the binding mode of the phenothrin-HSA complex. The binding behaviors of the chiral phenothrin mixture differed during the complexation. In conclusion, both the experimental and theoretical investigations provide useful information for better understanding and reducing the potential deleterious effects of the chiral phenothrin mixture on human long-term physio-pathological status.


Subject(s)
Serum Albumin, Human , Serum Albumin , Binding Sites , Circular Dichroism , Humans , Molecular Docking Simulation , Protein Binding , Pyrethrins , Serum Albumin/chemistry , Serum Albumin, Human/chemistry , Spectrometry, Fluorescence , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...