Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Antiviral Res ; : 105960, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986872

ABSTRACT

Respiratory syncytial virus is the major cause of respiratory viral infections, particularly in infants, immunocompromised populations, and the elderly (over 65 years old), the prevention of RSV infection has become a priority. In this study, we generated a chimeric influenza virus, termed LAIV/RSV/HA-3F, using reverse genetics technology which contained three repeats of the RSV fusion protein neutralizing epitope site II to the N terminal in the background of the hemagglutinin (HA) gene of cold adapted influenza vaccine A/California/7/2009 ca. LAIV/RSV/HA-3F exhibited cold-adapted (ca) and attenuated (att) phenotype. BALB/c mice immunized intranasally with LAIV/RSV/HA-3F showed robust immunogenicity, inducing viral-specific antibody responses against both influenza and RSV, eliciting RSV-specific humoral, cellular and mucosal immune responses. LAIV/RSV/HA-3F also conferred protection as indicated by reduced viral titers and improved lung histopathological alterations against live RSV virus challenge. Mechanismly, single-cell RNA sequencing (scRNA-seq) and single-cell T cell antigen receptor (TCR) sequencing were employed to characterize the immune responses triggered by chimeric RSV vaccine, displaying that LAIV/RSV/HA-3F provided protection mainly via interferon-γ (IFN-γ). Moreover, we found that LAIV/RSV/HA-3F significantly inhibited viral replication in the challenged mouse lung and protected against subsequent RSV challenge in cotton rats without causing lung disease. Taken together, our findings demonstrated that LAIV/RSV/HA-3F has potential as a promising bivalent vaccine with dual purpose candidate for the prevention of influenza and RSV, and preclinical and clinical studies warrant further investigations.

2.
J Med Virol ; 96(7): e29308, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39007405

ABSTRACT

Respiratory syncytial virus (RSV) remains the primary cause of lower respiratory tract infections, particularly in infants and the elderly. In this study, we employed reverse genetics to generate a chimeric influenza virus expressing neuraminidase-3F protein conjugate with three repeats of the RSV F protein protective epitope inserted into the NA gene of A/California/7/2009 ca (CA/AA ca), resulting in rFlu/RSV/NA-3F (hereafter, rFRN3). The expression of NA-3F protein was confirmed by Western blotting. The morphology and temperature-sensitive phenotype of rFRN3 were similar to CA/AA ca. Its immunogenicity and protective efficiency were evaluated in BALB/c mice and cotton rats. Intranasal administration of rFRN3 elicited robust humoral, cellular, and to some extent, mucosal immune responses. Compared to controls, rFRN3 protected animals from RSV infection, attenuated lung injury, and reduced viral titers in the nose and lungs post-RSV challenge. These results demonstrate that rFRN3 can trigger RSV-specific immune responses and thus exhibits potent protective efficacy. The "dual vaccine" approach of a cold-adapted influenza vector RSV vaccine will improve the prophylaxis of influenza and RSV infection. rFRN3 thus warrants further clinical investigations as a candidate RSV vaccine.


Subject(s)
Antibodies, Viral , Genetic Vectors , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Sigmodontinae , Animals , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/genetics , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Mice , Genetic Vectors/genetics , Genetic Vectors/immunology , Lung/virology , Lung/immunology , Lung/pathology , Administration, Intranasal , Cold Temperature , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Disease Models, Animal , Viral Fusion Proteins/immunology , Viral Fusion Proteins/genetics , Immunity, Mucosal , Vaccine Efficacy , Viral Load
3.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(2): 108-112, 2022 Mar.
Article in Chinese | MEDLINE | ID: mdl-36031566

ABSTRACT

Objective: To construct the lentivirus overexpression vector with two label genes fused with CopGFP and PuroR and to detect the emission of green fluorescence as well as resistance to puromycin in liver cancer cells infected with lentivirus packaged with the above vector. Methods: Firstly, two fragments containing copGFP and PuroR coding sequences were amplified from pCDH-CMV-MCS-copGFP and pLKO.1 respectively; secondly, the two amplified regions were fused with each other by recombinant PCR; thirdly, the fusion DNA fragment was cut and inserted into pCDH-CMV-MCS-copGFP vector, which was linearized with the same restriction endonuclease as used to digest fusion DNA fragment: BamH Ⅰ and Sal Ⅰ. The fusion region in the constructed vector was confirmed by DNA sequencing. The checked vector was co-transfected with package assistant plasmids, namely PLP1, PLP2 and VSVG into in 293T cells and the culture supernatant was subjected to centrifuge and infect liver cancer MHCC97H cells, which were then used to detect their resistance to puromycin (infected cells were treated with 1 mg/ml puromycin for 7 days after infection) and to observe green fluorescence emission in microscope. To determine its efficiency in expressing foreign target protein, the Sp1 coding region was inserted into the MCS sites of the vector, and Sp1 mRNA and protein expression levels were compared with the vehicle vector by RT-qPCR and Western blot. Results: The lentivirus overexpression vector with two label genes fused with CopGFP and PuroR was successfully constructed, and the liver cancer cells infected with lentivirus packaged with the vector expressing two labeling genes fused with CopGFP and PuroRshowed both emission of green fluorescence and resistance to puromycin simultaneously, while cells containing with the vector inserted with Sp1 coding region improved Sp1 mRNA level with 3.3 fold and protein level with 2.2 fold higher in comparison with cells containing the vehicle vector (P<0.01). Conclusion: The fused label genes consisting of copGFP and PuroR are correctly cloned into the lentivirus vector and confer cells with the ability to emission of green fluorescence and resistance to puromycin, besides, the vector may promote the expression of the target gene with long coding sequence.


Subject(s)
Cytomegalovirus Infections , Liver Neoplasms , Genetic Vectors , Humans , Lentivirus , Puromycin , RNA, Messenger , Transfection
4.
Hum Immunol ; 83(2): 119-129, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34785098

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the pandemic of coronavirus disease 2019 (COVID-19). Great international efforts have been put into the development of prophylactic vaccines and neutralizing antibodies. However, the knowledge about the B cell immune response induced by the SARS-CoV-2 virus is still limited. Here, we report a comprehensive characterization of the dynamics of immunoglobin heavy chain (IGH) repertoire in COVID-19 patients. By using next-generation sequencing technology, we examined the temporal changes in the landscape of the patient's immunological status and found dramatic changes in the IGH within the patient's immune system after the onset of COVID-19 symptoms. Although different patients have distinct immune responses to SARS-CoV-2 infection, by employing clonotype overlap, lineage expansion, and clonotype network analyses, we observed a higher clonotype overlap and substantial lineage expansion of B cell clones 2-3 weeks after the onset of illness, which is of great importance to B-cell immune responses. Meanwhile, for preferences of V gene usage during SARS-CoV-2 infection, IGHV3-74 and IGHV4-34, and IGHV4-39 in COVID-19 patients were more abundant than those of healthy controls. Overall, we present an immunological resource for SARS-CoV-2 that could promote both therapeutic development as well as mechanistic research.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Receptors, Antigen, B-Cell/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged, 80 and over , Antibodies, Neutralizing/immunology , Female , Humans , Immunoglobulin Heavy Chains/immunology , Male , Middle Aged
6.
J Gen Virol ; 95(Pt 9): 1886-1891, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24914066

ABSTRACT

Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants and the elderly, and no vaccine against this virus has yet been licensed. Here, we report a recombinant PR8 influenza virus with the RSV fusion (F) protein epitopes of the subgroup A gene inserted into the influenza virus non-structural (NS) gene (rFlu/RSV/F) that was generated as an RSV vaccine candidate. The rescued viruses were assessed by microscopy and Western blotting. The proper expression of NS1, the NS gene product, and the nuclear export protein (NEP) of rFlu/RSV/F was also investigated using an immunofluorescent assay. The rescued virus replicated well in the MDCK kidney cell line, A549 lung adenocarcinoma cell line and CNE-2Z nasopharyngeal carcinoma cell line. BALB/c mice immunized intranasally with rFlu/RSV/F had specific haemagglutination inhibition antibody responses against the PR8 influenza virus and RSV neutralization test proteins. Furthermore, intranasal immunization with rFlu/RSV/F elicited T helper type 1-dominant cytokine profiles against the RSV strain A2 virus. Taken together, our findings suggested that rFlu/RSV/F was immunogenic in vivo and warrants further development as a promising candidate vaccine.


Subject(s)
Influenza A virus/genetics , Respiratory Syncytial Viruses/genetics , Respiratory Syncytial Viruses/immunology , Viral Fusion Proteins/immunology , Administration, Intranasal , Animals , Antibodies, Viral/immunology , COS Cells , Cell Line, Tumor , Chick Embryo , Chlorocebus aethiops , Dogs , Female , Gene Transfer Techniques , Genetic Vectors , Hemagglutination Inhibition Tests , Humans , Immunization , Influenza A virus/immunology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Neutralization Tests , Respiratory Syncytial Virus Infections/immunology , Viral Fusion Proteins/biosynthesis , Viral Fusion Proteins/genetics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology
7.
Antiviral Res ; 104: 110-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24509239

ABSTRACT

Respiratory syncytial virus (RSV) is an important viral pathogen that causes life-threatening respiratory infections in both infants and the elderly; no vaccines are at present available. In this report, we examined the use of influenza virus as a vehicle for production of an experimental RSV vaccine. We used reverse genetics to generate a recombinant influenza A virus with epitopes from the RSV fusion (F) and attachment (G) proteins (rFlu/RSV/F+G) in the influenza virus nonstructural (NS1) protein gene. Expression of RSV F+G epitope proteins was confirmed by Western blotting, and no changes in viral morphology were evident following examination by electron microscopy. BALB/c mice immunized intranasally with rFlu/RSV/F+G showed viral-specific antibody responses against both influenza and RSV. Total IgG, IgG1, IgG2a and IgA were measured in mice immunized with rFlu/RSV/F+G, revealing robust cellular and mucosal immune responses. Furthermore, we found that rFlu/RSV/F+G conferred protection against subsequent influenza and RSV challenges, showing significant decreases in viral replication and obvious attenuation of histopathological changes associated with viral infections. These findings suggest that rFlu/RSV/F+G is a promising vaccine candidate, which should be further assessed using cotton rat and primate models.


Subject(s)
Antibodies, Viral/immunology , Epitopes/immunology , Influenza Vaccines/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Viruses/immunology , Viral Fusion Proteins/immunology , Animals , Cell Line , Chlorocebus aethiops , Disease Models, Animal , Dogs , Epitopes/chemistry , Female , Gene Order , Genetic Vectors/genetics , Immunity, Mucosal , Immunization , Influenza Vaccines/genetics , Liver/immunology , Liver/virology , Lung/immunology , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Respiratory Syncytial Viruses/genetics , Th1 Cells/immunology , Viral Fusion Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...