Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973735

ABSTRACT

Transmembrane domains (TMDs) contain information targeting membrane proteins to various compartments of the secretory pathway. In previous studies, short or hydrophilic TMDs have been shown to target membrane proteins either to the endoplasmic reticulum (ER), or to the Golgi apparatus. The basis for differential sorting to the ER and to the Golgi apparatus remained however unclear. To clarify this point, we analyzed quantitatively the intracellular targeting of a collection of proteins exhibiting a single TMD. Our results reveal that membrane topology is a major targeting element in the early secretory pathway: type I proteins with a short transmembrane domain are targeted to the ER, and type II proteins to the Golgi apparatus. A combination of three features accounts for the sorting of simple membrane proteins in the secretory pathway: membrane topology, length and hydrophilicity of the TMD, and size of the cytosolic domain. By clarifying the rules governing sorting to the ER and to the Golgi apparatus, our study may revive the search for sorting mechanisms in the early secretory pathway.

2.
BMC Mol Cell Biol ; 22(1): 48, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34587896

ABSTRACT

BACKGROUND: Cisd1 and Cisd2 proteins share very similar structures with an N-terminal membrane-anchoring domain and a C-terminal cytosolic domain containing an iron-cluster binding domain and ending with a C-terminal KKxx sequence. Despite sharing a similar structure, Cisd1 and Cisd2 are anchored to different compartments: mitochondria for Cisd1 and endoplasmic reticulum for Cisd2. The aim of this study was to identify the protein motifs targeting Cisd2 to the ER and ensuring its retention in this compartment. RESULTS: We used new recombinant antibodies to localize Cisd1 and Cisd2 proteins, as well as various protein chimeras. Cisd2 is targeted to the ER by its N-terminal sequence. It is then retained in the ER by the combined action of a C-terminal COPI-binding KKxx ER retrieval motif, and of an ER-targeting transmembrane domain. As previously reported for Cisd1, Cisd2 can alter the morphology of the compartment in which it accumulates. CONCLUSION: Although they share a very similar structure, Cisd1 and Cisd2 use largely different intracellular targeting motifs to reach their target compartment (mitochondria and endoplasmic reticulum, respectively).


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Amino Acid Motifs , Membrane Proteins/genetics , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...