Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(29): 11372-11380, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37431607

ABSTRACT

[n]Cycloparaphenylenes ([n]CPPs, n denotes the number of phenyl groups) are difficult to synthesize because of the strain related to their bent phenyl rings. In particular, the strain in [3]CPP is high enough to destroy the π electron delocalization, leading to the spontaneous structural transition to an energetically more stable "bond-shift" (BS) isomer ([3]BS). In this contribution, we propose to achieve [3]CPP by enhancing the π electron delocalization through hosting a guest metal atom. Our computations revealed that Sc could stabilize [3]CPP by forming the [Sc©[3]CPP]+ complex through the favorable π-Sc donation-backdonation interactions. Thermodynamically, the binding energy between the Sc atom and [3]CPP was -205.7 kcal/mol, which could well compensate not only the energy difference of 44.2 kcal/mol between [3]CPP and [3]BS but also the extremely high strain energy of 170.3 kcal/mol in [3]CPP. Simultaneously, the [Sc©[3]CPP]+ complex is stable up to 1500 K in dynamic simulations, suggesting its high viability in the synthesis.

2.
Chem Commun (Camb) ; 57(47): 5806-5809, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33999984

ABSTRACT

We predicted the stable alkaline earth complexes M(Cp)3- (M = Ca, Sr, Ba; Cp = cyclopentadienyl), where the M centers were in their stable +2 oxidation state and mimicked the bonding behaviour of transition metals by participating in bonding with the π orbitals of Cp ligands using their d orbitals.

3.
Dalton Trans ; 50(7): 2654-2662, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33527940

ABSTRACT

We present a detailed DFT mechanistic study on the first Ni-catalyzed direct carbonyl-Heck coupling of aryl triflates and aldehydes to afford ketones. The precatalyst Ni(COD)2 is activated with the phosphine (phos) ligand, followed by coordination of the substrate PhOTf, to form [Ni(phos)(PhOTf)] for intramolecular PhOTf to Ni(0) oxidative addition. The ensuing phenyl-Ni(ii) triflate complex substitutes benzaldehyde for triflate by an interchange mechanism, leaving the triflate anion in the second coordination sphere held by Coulomb attraction. The Ni(ii) complex cation undergoes benzaldehyde C[double bond, length as m-dash]O insertion into the Ni-Ph bond, followed by ß-hydride elimination, to produce Ni(ii)-bound benzophenone, which is released by interchange with triflate. The resulting neutral Ni(ii) hydride complex leads to regeneration of the active catalyst following base-mediated deprotonation/reduction. The benzaldehyde C[double bond, length as m-dash]O insertion is the rate-determining step. The triflate anion, while remaining in the second sphere, engages in electrostatic interactions with the first sphere, thereby stabilizing the intermediate/transition state and enabling the desired reactivity. This is the first time that such second-sphere interaction and its impact on cross-coupling reactivity has been elucidated. The new insights gained from this study can help better understand and improve Heck-type reactions.

4.
RSC Adv ; 11(26): 15841-15846, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-35481175

ABSTRACT

NBe5H n n-3 (n = 0-5) (0A-5A) species with a novel planar pentacoordinate nitrogen (ppN) were designed by the isoelectronic substitution of the C atom in planar pentacoordinate carbon (ppC) species CBe5H n n-4 (n = 0-5) with an N atom. The highly flexible H atoms found in ppC species CBe5H2 2- and CBe5H3 - were fixed upon the nitrogen substitution, as mirrored by the non-flexible H atoms in their ppN analogues NBe5H2 - (2A) and NBe5H3 (3A). Moreover, the N atom was found to fit the H-surrounded Be5 rings better than the C atom because the ppC species CBe5H4 and CBe5H5 + adopted non-planar structures due to size-mismatch between the C atom and the H-surrounded Be5 ring, but their ppN analogues NBe5H4 + (4A) and NBe5H5 2+ (5A) adopted perfect planar structures. The electronic structure analyses revealed that the N atoms in 0A-5A were involved in four doubly occupied orbitals, including three six-center two-electron (6c-2e) σ bonds and one 6c-2e π bond. Therefore, these ppN species not only obey the octet rule, but also possess the interesting σ and π double aromaticity, which contributes to the stabilization. Consequently, 2A, 4A, and 5A are charged kinetically viable global energy minima, and are suitable for the gas phase generation and spectroscopic characterization.

5.
Phys Chem Chem Phys ; 22(30): 17062-17067, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32568316

ABSTRACT

Computational design has played an important role in planar hyper-coordinate carbon (phC) chemistry. However, none of numerous computationally predicted phC species were subsequently successfully synthesized in the condensed phase, perhaps due to the frustrating issue of oxidation. In the present work, we studied the influence of stepwise oxidation on the structure, stability, and properties of phC species using the milestone planar pentacoordinate carbon (ppC) species CAl5+ as an example. Our results indicated that the ppC structure of CAl5+ would be directly destroyed with one, two, or six O atom(s) per molecule present and indirectly with three or four O atoms, but maintained with five O atoms due to the ppC isomer of CAl5O5+ being a kinetically stable global energy minimum displaying σ and π double aromaticity. Moreover, the magnitudes of the first to fifth vertical oxygen affinities (VOAs) for CAl5+ were determined to be very high (-85.5 to -116.3 kcal mol-1), probably due to the existence of peripheral diffuse Al-Al bond(s). However, the sixth VOA was reduced significantly to -50.2 kcal mol-1, consistent with the absence of any diffuse Al-Al bond in the corresponding CAl5O5+ species. So CAl5O5+ may be insensitive to oxidation. Therefore, the ppC species D5h CAl5O5+ might be resistant to being degraded under a delicate control of oxidation level (producing five O atoms per CAl5+ molecule).

6.
Angew Chem Int Ed Engl ; 58(48): 17365-17374, 2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31498532

ABSTRACT

We report the synthesis and spectroscopic identification of the trisbenzene complexes of strontium and barium M(Bz)3 (M=Sr, Ba) in low-temperature Ne matrix. Both complexes are characterized by a D3 symmetric structure involving three equivalent η6 -bound benzene ligands and a closed-shell singlet electronic ground state. The analysis of the electronic structure shows that the complexes exhibit metal-ligand bonds that are typical for transition metal compounds. The chemical bonds can be explained in terms of weak donation from the π MOs of benzene ligands into the vacant (n-1)d AOs of M and strong backdonation from the occupied (n-1)d AO of M into vacant π* MOs of benzene ligands. The metals in these 20-electron complexes have 18 effective valence electrons, and, thus, fulfill the 18-electron rule if only the metal-ligand bonding electrons are counted. The results suggest that the heavier alkaline earth atoms exhibit the full bonding scenario of transition metals.

7.
Dalton Trans ; 48(19): 6581-6587, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31016316

ABSTRACT

A current project in metal-metal bonding chemistry is to achieve ultrashort metal-metal distances (USMMDs, denoted by dM-M < 1.900 Å) between main group metal beryllium atoms. A valid way for achieving such USMMDs is the substitution of a carbon atom in a planar pentacoordinate environment with the isoelectronic Be2 moiety. In the present work, we report our recent findings that a similar substitution can be applied to the carbon atom in a planar hexacoordinate environment. Using species CN3Be3+ and CO3Li3+ and related analogues as the templates, the Be2N3M3+ (M = Be, Mg, Ca) and Be2O3M3+ (M = Li, Na, K) species with axial ultrashort Be-Be distances of 1.627-1.870 Å were designed computationally. The ultrashort Be-Be distances in these species represent a balance between the lengthening effect of axial Be-Be electrostatic interactions and the shortening effects of the strong X-Be bonding and repulsive X-X-X electrostatic interactions. In addition, the shorter axial Be-Be distances were determined firstly by the smaller size of the bridging electronegative X atoms and secondly by the lower electronegativity of the peripheral M atoms, while the stabilities of the newly designed species were closely related to the types of valence electron pairs, whereby the localized two-center two-electron bonds were better for stabilization than the non-bonding valence lone pairs. Among the newly designed species, Be2N3Be3+ and Be2N3Mg3+ were characterized to be the kinetically stable global minima, thereby providing promising targets for the experimental realization of species with USMMDs between main group metals.

8.
Phys Chem Chem Phys ; 20(18): 12642-12649, 2018 May 09.
Article in English | MEDLINE | ID: mdl-29696257

ABSTRACT

A CB3 moiety extracted from the building units of milestone "hyparenes" (families of species with a planar pentacoordinate carbon (ppC)) was found to be a more basic building block, which can be employed to design a family of "hyparene" analogues CB3E2q (q = ±1) also with a ppC. The majority of main group elements can feasibly serve as the E atom. Despite the number of valence electrons, the ppC atoms in the CB3E2q (q = ±1) species were involved in three delocalized σ orbitals and a delocalized π orbital, so the carbon atom obeys the octet rule. The NICS studies indicated that these ppC structures are σ and π double aromatic. Given that most of them are less favourable in energy than their boron-centered isomers, it is remarkable that the global minimum of CB3Mg2- adopts the ppC arrangement. Such a ppC structure is also kinetically stable. Compared to previously reported anionic ppC global minima, CB3Mg2- does not contain hyper toxic beryllium and thus is much more attractive to our experimental colleagues for realizing the ppC species using negative ion photoelectron detachment spectroscopy.

9.
RSC Adv ; 8(64): 36521-36526, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-35558954

ABSTRACT

The diagonal relationship between beryllium and aluminum and the isoelectronic relationship between BeH unit and Al atom were utilized to design nine new planar and quasi-planar pentacoordinate carbon (ppC) species CAl n Be m H x q (n + m = 5, q = 0, ±1, x = q + m - 1) (1a-9a) by attaching H atoms onto the Be atoms in CAl4Be, CAl3Be2 -, CAl2Be3 2-, and CAlBe4 3-. These ppC species are σ and π double aromatic. In comparison with their parents, these H-attached molecules are more stable electronically, as can be reflected by the more favourable alternative negative-positive-negative charge-arranging pattern and the less dispersed peripheral orbitals. Remarkably, seven of these nine molecules are global energy minima, in which four of them are kinetically stable, including CAl3Be2H (2a), CAl2Be3H- (4a), CAl2Be3H2 (5a), and CAlBe4H4 + (9a). They are the promising target for the experimental realization of species with a ppC.

SELECTION OF CITATIONS
SEARCH DETAIL
...