Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 251: 126150, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37544555

ABSTRACT

High-performance biosourced polylactic acid (PLA)/poly(butylene succinate) (PBS) blends with small amounts of compatibilizer, epoxy-functionalized methyl methacrylate-co-glycidyl methacrylate copolymer (PMMA-GMA), were fabricated by melt compounding. The properties of the modified PLA/PMMA-GMA, PBS/PMMA-GMA, and PLS(PLA/PBS)/PMMA-GMA blends were investigated systematically. DSC combined with X-ray diffraction revealed a low-order semi-crystalline structure for all samples. SEM and DMA showed that the compatibility between PLA and PBS was improved after addition of PMMA-GMA. Rheological behavior of blends showed that the addition of PMMA-GMA resulted in a significant improvement in the viscoelasticity. FT-IR spectra confirmed that the interfacial compatibilization between PLA and PBS phases was improved due to the reaction of epoxy groups with terminal groups of PLA and PBS. Finally, the toughness and notched impact strength of the PLA materials were increased significantly. The elongation at break and notched impact strength of PLS/PMMA-GMA was about 55.7 and 6.2 times than neat PLA after incorporation of 7 wt% PMMA-GMA, respectively.

2.
Int J Biol Macromol ; 183: 1871-1880, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-34087292

ABSTRACT

Poly(L-lactic acid) (PLLA) blends with excellent low-temperature toughness and strength were prepared by melt compounding with acrylic ester based impact resistance agent (AEIR). The morphology, thermal properties, mechanical properties and biodegradability of the blends were investigated. Morphology observations revealed the blend was immiscible but had good compatibility with the dispersed phase size of about 200-300 nm. With the addition of AEIR, dramatic improvement in toughness of PLLA was achieved in a wide temperature range, especially at low temperatures the tensile strength was effectively remained. For the blend with 20 wt% AEIR, the tensile strength, elongation at break and impact strength were 51.6 MPa, 72% and 77.1 KJ/m2 at -20 °C, respectively, much greater than that reported. The calculated Tg of AEIR was lower than the test temperatures, and the brittle-tough transition occurred. The PLLA matrix demonstrated obvious shear yielding which induced energy dissipation and therefore lead to excellent toughness of the blends. Moreover, the biodegradation of PLLA was enhanced after blends preparation.


Subject(s)
Acrylates/chemistry , Polyesters/chemistry , Biochemical Phenomena , Calorimetry, Differential Scanning , Cold Temperature , Tensile Strength
3.
Int J Biol Macromol ; 183: 45-54, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33892033

ABSTRACT

The poly(lactic acid) (PLA) composites with the silane coupling agent treated basalt fiber (SBF) and basalt fiber powder (SBFP) were prepared. The crystalline morphology, mechanical properties, and heat resistance of PLA/SBF/SBFP composites were investigated. The results indicated that SBF or SBFP not only acted as heterogeneous nucleating agents for PLA crystallization but also improved the mechanical properties and heat resistance of PLA. Morphological analyses showed that SBFP could play nucleating role to reduce the spherulites size of PLA, and SBF could restrict the mobility of PLA chains and construct interface crystallization for PLA during isothermal crystallization process. The composites with higher SBF loading, the "Transcrystalline-network" built in the composites significantly improved the heat resistance properties of PLA. Due to the synergistic effect of SBF and SBFP, the PLA/SBF/SBFP composites showed high heat deformation temperature (HDT), especially after isothermal crystallization, the HDT increased to 150.5 °C for the PLA/SBF/SBFP 50/10/40 composite, much higher (about 190%) than that of pure PLA (71.7 °C).


Subject(s)
Polyesters/chemistry , Silicates/chemistry , Crystallization , Molecular Conformation , Powders , Temperature
4.
Int J Biol Macromol ; 143: 443-452, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31790733

ABSTRACT

In the work, the poly(lactic acid) (PLA)/poly (ethylene-butylacrylate-glycidyl methacrylate) (PTW) blends were prepared by melt compounding. PTW as a toughening agent for PLA, the PLA/PTW blends had good compatibility due to the chemical reaction between the epoxy groups of PTW and the end group of PLA during the blending process. With increasing PTW content from 0 to 20%, the impact strength of PLA/PTW blends was enhanced from 4.6 to 54.1 kJ/m2 and the elongation at break was increased from 5.6% to 270%. The scanning electron microscopy (SEM) images of the impact fracture surfaces showed a large amount of cavities and plastic deformation, which caused by the elastomer and the interfacial adhesion enhanced through the interaction of the terminal functional groups. That was the reason that the toughness of PLA was increased. Finally, proteinase K-catalyzed degradation tests shown that the addition of PTW was beneficial to the biodegradation of PLA and reduced environmental pollution.


Subject(s)
Elastomers/chemistry , Endopeptidase K/chemistry , Polyesters/chemistry , Elastomers/chemical synthesis , Microscopy, Electron, Scanning , Polyesters/chemical synthesis
5.
Int J Biol Macromol ; 137: 1141-1152, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31295492

ABSTRACT

Polylactide (PLA), as a biodegradable packing material, has attracted plenty of attention. However, some problems still limit the application of PLA in packing industry such as the inherent brittleness and low crack propagation resistance. In order to overcome these challenges, we blended PLA with a reactive toughening agent (Ethylene-Acrylic ester-Glycidyl methacrylate terpolymer) during extrusion and film processing. The glycidyl methacrylate groups in toughening agent offered some sites to react with COOH and OH groups of PLA thus leaded to a great interfacial compatibility. The proper compatibility was the premise of adjusting the phase structure of blend and film based on different processing methods. The blend had a sea-island structure after melting extrusion and heat pressed technologies while film formed annular layer structure after film blowing. The structure determined properties. Both the toughness and melt strength of blends had been improved. Moreover, it was interesting to found that tear strength of film with 10% toughening agent dramatically increased to 197.8 KN/m and 137.7 KN/m in the transverse direction (TD) and in the machine direction (MD), respectively. Besides, the elongation at break of film could reach 242.2% in MD. This work exhibited that phase morphology was significant for mechanical performances.


Subject(s)
Biocompatible Materials/chemistry , Polyesters/chemistry , Biocompatible Materials/metabolism , Industry , Mechanical Phenomena , Polyesters/metabolism , Rheology , Temperature , Tensile Strength
6.
Carbohydr Polym ; 142: 222-9, 2016 May 20.
Article in English | MEDLINE | ID: mdl-26917394

ABSTRACT

Porous poly(L-lactic acid) (PLLA) sheets were prepared by uniaxial stretching PLLA sheets containing starch filler. Here, the starch filler content, stretching ratio, stretching rate and stretching temperature are important factors to influence the structure of the porous PLLA sheets, therefore, they have been investigated in detail. The pore size distribution and tortuosity were characterized by Mercury Intrusion Porosimetry. The results revealed that the porosity and pore size enlarged with the increase of the starch filler content and stretching ratio, while shrank with the rise of stretching temperature. On the other hand, the pore structure almost had no changes with the stretching rate ranging between 5 and 40 mm/min. In order to test and verify that the porous PLLA sheet was suitable for the tissue engineering, the starch particles were removed by selective enzymatic degradation and its in vitro biocompatibility to osteoblast-like MC3T3-E1 cells was investigated.


Subject(s)
Biocompatible Materials/chemistry , Polyesters/chemistry , Starch/chemistry , Animals , Cell Line , Mice , Osteoblasts/cytology , Porosity , Tissue Engineering
7.
Int J Biol Macromol ; 76: 49-57, 2015 May.
Article in English | MEDLINE | ID: mdl-25709010

ABSTRACT

Biodegradable polymer composites based on poly(ɛ-caprolactone) (PCL) and poly(lactic acid) (PLA) fibers with diameters of 18, 26, 180 µm were prepared by melt compounding. The PLA fiber content in the composites was constant at 20% by weight. The effects of fibers with different diameters on the physical properties and enzymatic degradation of PCL were investigated. The morphological analysis indicated good interfacial adhesion between PCL and PLA fiber, which was beneficial to improve the physical properties of PCL. With increasing PLA fiber diameter, the complex viscosity and modulus of PCL were significantly increased, especially at low frequencies, indicating that the hindered effect of the fiber on the mobility of the PCL molecular chains was more obvious when PLA fiber diameter was thicker. However, as for the mechanical properties, the reinforcement was more obvious to PCL with the smaller PLA fiber diameter. This was because increasing efficient load transfer may be appeared due to the larger surface area and better interface bonding force of the fiber with thinner diameters. The enzymatic degradation of PCL was accelerated with the addition of large PLA fiber diameter of 26 and 180 µm, and hardly changed with the small PLA fiber diameter of 18 µm.


Subject(s)
Caproates/chemistry , Lactic Acid/chemistry , Lactones/chemistry , Polymers/chemistry , Biocompatible Materials/chemistry , Materials Testing , Polyesters , Rheology , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...