Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(13): e202303917, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38093171

ABSTRACT

Aqueous zinc-ion batteries (ZIBs) have emerged as the most promising candidate for large-scale energy storage due to their inherent safety, environmental friendliness, and cost-effectiveness. Simultaneously, the utilization of organic electrode materials with renewable resources, environmental compatibility, and diverse structures has sparked a surge in research and development of aqueous Zn-organic batteries (ZOBs). A comprehensive review is warranted to systematically present recent advancements in design principles, synthesis techniques, energy storage mechanisms, and zinc-ion storage performance of organic cathodes. In this review article, we comprehensively summarize the energy storage mechanisms employed by aqueous ZOBs. Subsequently, we categorize organic cathode materials into small-molecule compounds and high-molecular polymers respectively. Novel polymer materials such as conjugated polymers (CPs), conjugated microporous polymers (CMPs), and covalent organic frameworks (COFs) are highlighted with an overview of molecular design strategies and structural optimization based on organic cathode materials aimed at enhancing the performance of aqueous ZOBs. Finally, we discuss the challenges faced by aqueous ZOBs along with future prospects to offer insights into their practical applications.

2.
FASEB J ; 37(11): e23276, 2023 11.
Article in English | MEDLINE | ID: mdl-37878291

ABSTRACT

Acute kidney injury (AKI) and chronic kidney disease (CKD) are interconnected syndromes that represent a global public health challenge. Here, we identified a specific role of survival of motor neuron (SMN) in ischemia/reperfusion (I/R)-induced kidney injury and progression of CKD. SMN was an essential protein in all cell type and was reported to play important roles in multiple fundamental cellular homeostatic pathways. However, the function of SMN in experimental models of I/R-induced kidney fibrosis has not extensively studied. Genetic ablation of SMN or small interfering RNA-base knockdown of SMN expression aggravated the tubular injury and interstitial fibrosis. Administration of scAAV9-CB-SMN or epithelial cell overexpression of SMN reduced I/R-induced kidney dysfunction and attenuated AKI-to-CKD transition, indicating that SMN is vital for the preservation and recovery of tubular phenotype. Our data showed that the endoplasmic reticulum stress (ERS) induced by I/R was persistent and became progressively more severe in the kidney without SMN. On the contrary, overexpression of SMN prevented against I/R-induced ERS and tubular cell damage. In summary, our data collectively substantiate a critical role of SMN in regulating the ERS activation and phenotype of AKI-to-CKD transition that may contribute to renal pathology during injury and repair.


Subject(s)
Acute Kidney Injury , Renal Insufficiency, Chronic , Reperfusion Injury , Survival of Motor Neuron 1 Protein , Humans , Acute Kidney Injury/genetics , Endoplasmic Reticulum Stress/genetics , Fibrosis , Haploinsufficiency , Ischemia , Kidney , Renal Insufficiency, Chronic/genetics , Reperfusion Injury/genetics , Survival of Motor Neuron 1 Protein/genetics
3.
Dalton Trans ; 51(36): 13742-13748, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36017795

ABSTRACT

The Coulomb force between protons and negative charges usually leads to low proton diffusion and poor proton conductivity. Herein, acid-base conjugated MOFs of UiO-66-SO3--NH3+ were constructed by linking sulfonic acid and amine groups to an organic skeleton. According to the XPS and elemental analysis, the ratio of 2-aminoterephthalic acid/2-sulfoterephthalic acid was ∼1.9 in UiO-66-SO3--NH3+. After introducing sulphuric acid molecules, the MOF-based electrolyte exhibited a remarkable proton conductivity of 5.40 × 10-1 S cm-1 and low activation energy of 0.15 eV at 100% RH and 90 °C. This remarkable proton conducting behavior was generated by the synergistic system in the MOF, which contained certain synergistic effects such as between -SO3-⋯H+⋯SO42- and NH3+⋯SO42-, therefore possessing a Grotthuss mechanism, which facilitates facile proton transport.

4.
ACS Appl Mater Interfaces ; 13(13): 15536-15541, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33755423

ABSTRACT

Introducing nonvolatile liquid acids into porous solids is a promising solution to construct anhydrous proton-conducting electrolytes, but due to weak coordination or covalent bonds building these solids, they often suffer from structural instability in acidic environments. Herein, we report a series of steady conjugated microporous polymers (CMPs) linked by robust alkynyl bonds and functionalized with perfluoroalkyl groups and incorporate them with phosphoric acid. The resulting composite electrolyte exhibits high anhydrous proton conductivity at 30-120 °C (up to 4.39 × 10-3 S cm-1), and the activation energy is less than 0.4 eV. The excellent proton conductivity is attributed to the hydrophobic pores that provide nanospace for continuous proton transport, and the hydrogen bonding between phosphoric acid and perfluoroalkyl chains of CMPs promotes short-distance proton hopping from one side to the other.

SELECTION OF CITATIONS
SEARCH DETAIL
...