Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 14: 1200119, 2023.
Article in English | MEDLINE | ID: mdl-37781224

ABSTRACT

Lithium is commonly prescribed as a mood stabilizer in a variety of mental health conditions, yet its molecular mode of action is incompletely understood. Many cellular events associated with lithium appear tied to mitochondrial function. Further, recent evidence suggests that lithium bioactivities are isotope specific. Here we focus on lithium effects related to mitochondrial calcium handling. Lithium protected against calcium-induced permeability transition and decreased the calcium capacity of liver mitochondria at a clinically relevant concentration. In contrast, brain mitochondrial calcium capacity was increased by lithium. Surprisingly, 7Li acted more potently than 6Li on calcium capacity, yet 6Li was more effective at delaying permeability transition. The size distribution of amorphous calcium phosphate colloids formed in vitro was differentially affected by lithium isotopes, providing a mechanistic basis for the observed isotope specific effects on mitochondrial calcium handling. This work highlights a need to better understand how mitochondrial calcium stores are structurally regulated and provides key considerations for future formulations of lithium-based therapeutics.

2.
Adv Healthc Mater ; 11(12): e2200044, 2022 06.
Article in English | MEDLINE | ID: mdl-35192244

ABSTRACT

Metal ions are of widespread interest owing to their brilliant biomedical functions. However, a simple and universal nanoplatform designed for assembling a range of functional metal ions has not been explored. In this study, a concept of polyethylene glycol (PEG)-mediated transport of metal ions is proposed. 31 types of PEG-metal hybrid nanoparticles (P-MNPs) are successfully synthesized through anionic ring-opening polymerization (ROP), "thiol-ene" click reaction, and subsequent incorporation with multiple metal ions. Compared with other methods, the facile method proposed in this study can provide a feasible approach to design MNPs (mostly <200 nm) containing different metal ions and thus to explore their potential for cancer theranostics. As a proof-of-concept demonstration, four types P-MNPs, i.e., PEG-metal hybrid copper nanoparticles (PEG-Cu NPs), ruthenium nanoparticles (PEG-Ru NPs), and manganese nanoparticles (PEG-Mn NPs) or gadolinium nanoparticles (PEG-Gd NPs), are proven to be tailored for chemodynamic therapy, photothermal therapy, and magnetic resonance imaging of tumors, respectively. Overall, this study provides several metal ions-based nanomaterials with versatile functions for broad applications in cancer theranostics. Furthermore, it offers a promising tool that can be utilized for processing other metal-based nanoparticles and exploring their potential in the biomedical field.


Subject(s)
Metal Nanoparticles , Nanoparticles , Neoplasms , Humans , Ions , Metals , Nanoparticles/therapeutic use , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Polyethylene Glycols , Precision Medicine
3.
Bioorg Chem ; 113: 104954, 2021 08.
Article in English | MEDLINE | ID: mdl-34023651

ABSTRACT

Organic small molecules with near-infrared (NIR) absorption hold great promise as the phototheranostic agents for clinical translation by virtue of their inherent merits such as well-defined chemical structure, high purity and good reproducibility. Probes that happen to be based on cyanine dyes exhibit strong NIR-absorbing and efficient photothermal conversion, representing a new class of photothermal agents (PAs) for photothermal therapy (PTT), and taking into account the heat susceptibility of Mitochondria (Mito), we designed and prepared a mitochondria-targeted organic small molecule (Mito-BWQ) based on thiazole orange maternal unit that can effectively kill tumor cells through the hyperpyrexia generated in the lesions under exogenous laser irradiation. The Confocal laser scanning microscope was employed to determine the preferential targeting of Mito-BWQ to the mitochondria of MCF-7 cells and U87 cells. When subjected to 600 nm laser radiation, Mito-BWQ produced an increase in temperature in test systems and this increase was dependent on both the laser power and probe concentration. In vitro tests, cytotoxicity was observed when cells were incubated with Mito-BWQ and exposed to laser irradiation. The PTT in vivo also showed that Mito-BWQ performed remarkably in tumor inhibition. This study thus provides a vital starting point for the creation of thiazole orange-based PTT formulations and promotes further advances in the field of PAs-based anticancer research and therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Mitochondria/drug effects , Photothermal Therapy , Quinolines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Mitochondria/metabolism , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
4.
Food Sci Nutr ; 8(7): 3545-3558, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32724617

ABSTRACT

Phloretin (Ph) is a natural active ingredient with wide biological properties. However, its poor water-solubility and low oral bioavailability limit the application significantly in functional food and drug. This study was to explore the mixed polymer Pluronic® F127 and P123 modified the different triglycerides (LCT, MCT, SCT) in self-nanoemulsions (SNEs) for enhancing the oral bioavailability and bioefficacy of Ph. The SNEs were characterized in terms of physical property study, lipolysis study, pharmacokinetic study, and anti-inflammatory effect. The water-solubility of LCT-Ph-SNE increased 3000-fold compared with Ph solution. Pharmacokinetic study of SNEs and other carriers (HP-ß-CD, PVP) results indicated that LCT-Ph-SNE was 7.9-fold more bioavailable compared with unformulated Ph. The anti-inflammatory activity of LCT-Ph-SNE in vivo represented a 6.8-fold enhancement compared with unformulated Ph. This novel SNE formulation may also be used for other poorly soluble ingredients with high loading capacity, which made a significant impact on functional food and drug.

5.
Pharmaceutics ; 11(9)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31480578

ABSTRACT

The molecular interactions between compound and polymeric carriers are expected to highly contribute to high drug load and good physical stability of solid dispersions. In this study, a series of amorphous solid dispersions (ASD) of Curcumin (Cur) were prepared with different polymers by the solvent evaporation method. With the carrier polyvinylpyrrolidone (PVP), the amorphous solid dispersion system exhibits a better solubility and stability than that with poloxamers and HP-ß-CD due to the strong drug-polymer interaction. The drug/polymer interaction and their binding sites were investigated by combined experimental (XRD, DSC, FTIR, SEM, Raman, and 1H-NMR) and molecular dynamics simulation techniques. The Curcumin ASD demonstrated enhanced bioavailability by 11-fold and improved anti-inflammatory activities by the decrease in cytokine production (MMP-9, IL-1ß, IL-6, VEGF, MIP-2, and TNF-α) compared to the raw Curcumin. The integration of experimental and modeling techniques is a powerful tool for the rational design of formulation development.

SELECTION OF CITATIONS
SEARCH DETAIL
...