Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 111: 1027-1031, 2018 May.
Article in English | MEDLINE | ID: mdl-29371147

ABSTRACT

Small heat shock proteins (sHSPs) are conserved among insects and play an important role in the regulation of many biological processes, including temperature stress, abiotic stress, immune responses, metamorphosis, and embryo development. Antheraea pernyi is an economically valuable silk-producing moth and source of insect food containing high-quality protein. The aim of this study was to quantify expression of the ApsHSP21 gene in response to pathogen-associated molecular patterns (PAMPs) and nucleopolyhedrovirus (NPV) challenge. The deduced ApsHSP21 protein sequence consists of 186 residues with a calculated molecular mass of 21.0 kDa and an isoelectronic point (pI) of 6.63. The protein contains a conserved α-crystallin domain (ACD), and includes two casein kinase II phosphorylation sites, a protein kinase C phosphorylation site, two tyrosine kinase phosphorylation sites, and various polypeptide binding sites. Phylogenetic analysis revealed that ApsHSP21 is closely related to homologs from other insects. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis revealed that expression of ApsHSP21 was significantly up-regulated at different timepoints following simulated pathogen challenge with lipopolysaccharide (LPS), peptidoglycan (PGN), glucan, and NPV. The results suggest sHSP21 is involved in innate immune responses in A. pernyi.


Subject(s)
Heat-Shock Proteins, Small/chemistry , Immunity, Active/immunology , Moths/immunology , Phylogeny , Animals , Binding Sites , Cloning, Molecular , Gene Expression Regulation/immunology , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins, Small/immunology , Immunity, Active/drug effects , Immunity, Active/genetics , Insect Proteins/chemistry , Insect Proteins/genetics , Lipopolysaccharides/chemistry , Moths/chemistry , Moths/genetics , Nucleopolyhedroviruses/genetics , Nucleopolyhedroviruses/pathogenicity , Protein Domains/genetics , Quercus/parasitology
2.
Fish Shellfish Immunol ; 73: 84-91, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29191796

ABSTRACT

The yellow catfish, Pelteobagrus fulvidraco, has been recognized as an important freshwater aquaculture species in Eastern and Southeast Asia. To gain a better understanding of the immune response in P. fulvidraco, we analyzed its transcriptome following stimulation with lipopolysaccharide (LPS). Phosphate buffer saline (PBS) was used as control. Following assembly and annotation, 72,152 unigenes with an average length of 1090 bp were identified. A total of 370 differentially expressed genes (DEGs) in the P. fulvidraco were observed at 12 h post LPS treatment, including 197 up-regulated genes and 173 down-regulated genes. Clusters of Orthologous Groups of proteins (KOG/COG) annotation demonstrated that a total of 18,819 unigenes classified into 26 categories. Gene ontology (GO) analysis revealed 20 biological process subcategories, 7 cellular component subcategories and 20 molecular function subcategories. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis identified immune responses pathways. Quantitative reverse transcription polymerase chain reaction measured the expression of 18 genes involved in the immune response. CXCL2-like chemokine (CXCL2), goose-type lysozyme (LYZ G), and cathepsin K (CTSK) were significantly up-regulated. This study enriches the P. fulvidraco transcriptome database and provides insight into the immune response of P. fulvidraco against infection.


Subject(s)
Catfishes/genetics , Catfishes/immunology , Fish Proteins/genetics , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Lipopolysaccharides/pharmacology , Transcriptome , Animals , Fish Proteins/metabolism , Liver/drug effects , Liver/immunology , Reverse Transcriptase Polymerase Chain Reaction/veterinary
3.
J Zhejiang Univ Sci B ; 14(10): 886-95, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24101205

ABSTRACT

OBJECTIVE: Information regarding the development of the enteric nervous system (ENS) is important for understanding the functional abnormalities of the gut. Because fertilized chicken eggs provide easy access to embryos, chicken models have been widely used to study embryonic development of myenteric plexus; however, no study has been focused on the postnatal period. The aim of this study was to perform a qualitative and quantitative analysis of the nitrergic neurons in the myenteric plexus of developing chickens in the postnatal period. METHODS: Whole-mount preparations of the myenteric plexus were made in 7-d, 15-d, and 40-d old (adult) chickens of either sex (n=15). The myenteric plexus was studied after nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) histochemistry using light microscopy, digital photography, and Image-Pro Plus 6.0 software. The numbers of positively stained neurons and ganglia were counted in the duodenum, jejunum, ileum, caecum, and colon in the different age groups. Data were expressed as mean±standard deviation (SD), and statistical analysis was performed using a one-way analysis of variance (ANOVA) test. RESULTS: The positively stained neurons showed various morphologies and staining intensities, and formed bead-shaped and U-shaped arrangements in the myenteric plexus. The densities of neurons and ganglia increased with age. However, the number of positive neurons per ganglion increased. The number of NADPH-d-positive neurons was highest in the colon, followed by the ileum, the jejunum, the duodenum, and the caeca in all age groups. CONCLUSIONS: Developmental changes in the myenteric plexus of chickens continue in the postnatal period, indicating that the maturation process of the gastrointestinal function is gradual. In addition, no significant difference is happening among different intestinal segments during postnatal development, suggesting that the function of different intestinal segments had been determined after birth.


Subject(s)
Myenteric Plexus/growth & development , Neurons/metabolism , Nitrergic Neurons/physiology , Animals , Chickens , Dihydrolipoamide Dehydrogenase/chemistry , Enteric Nervous System/growth & development , Female , Image Processing, Computer-Assisted , Intestines/growth & development , Intestines/innervation , Male , Time Factors , Tissue Distribution
4.
Micron ; 44: 451-62, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23123084

ABSTRACT

The structure of the nephron in adult soft-shelled turtles (Pelodiscus sinensis) was studied by light microscopy, transmission and scanning electron microscopy. The kidney contained 5-6 renal lobes. Nephrons of P. sinensis are composed of a renal corpuscle (RC) and of a renal tubule that appears divided morphologically into five distinct segments: neck segment (NS) (This segment is only present in approximately 10% of the nephrons), proximal tubule (PT), intermediate segment (IS), distal tubule (DT), and collecting duct (CD). The RCs and most of the convoluted DTs lie in the central zone, while the PTs and the CDs lie in the peripheral zone of the renal lobe. The renal corpuscle is relatively large with especial processes in podocytes and a thick basement membrane. The podocyte processes covering a large capillary area can be observed by TEM, and the major podocyte processes formed a very specific pattern in SEM. The podocyte processes expand to form a flattened network over the whole capillary loops surface, and only may observe little filtration slits in glomerular area. The neck segment when presentis short and has a relatively narrow lumen, consisting of cuboidal or squamous cells. There is a well-developed endocytic-lysosomal apparatus in the apical cytoplasm of the PT. The proximal tubule and intermediate segment cells show some differences between male and female. It showed that proximal tubule cells of male soft-shelt turtle contain lateral intercellular spaces, into which extensions of the cell membrane protrude, and the basal cell membrane forms a conspicuous labyrinth. Whereas, the basal and lateral cell membranes of the female are smooth, and no later-basal intercellular spaces. The differences between male and female in the middle segment cells is similar to proximal tubule cells. Not previously reported in vertebrate kidneys. The IS is the narrowest nephron segment, formed by multiciliated as well as nonciliated cells. In DT cells, basolateral interdigitations and infoldings are particularly well-developed. The CD contains clear cells with numerous secretory granules and dark cells with dense mitochondria and an elaborate Golgi complex. This study was undertaken in order to disclose specific kidney features in P. sinensis that could be related to function. In addition, the ultrastructure of the nephrons in P. sinensis are discussed in relation to other turtles and vertebrates.


Subject(s)
Nephrons/ultrastructure , Turtles/anatomy & histology , Animals , Female , Kidney Glomerulus/ultrastructure , Kidney Tubules, Proximal/ultrastructure , Male , Microscopy, Electron , Podocytes/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...