Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144522

ABSTRACT

The novel biochanin A-chromium(III) complex was synthesized by chelating chromium with biochanin A (BCA). The structure of the complex was determined and the complex ([CrBCA3]) was composed of chromium(III) and three ligands, and the chromium content was 55 µg/mg. The hypoglycemic activity of the complex was studied in db/db mice and C57 mice. The sub-acute toxicity test of the complex was carried out by the maximum limit method in KM mice. The hypoglycemic activity showed that the complex could reduce the weight of db/db mice and lower the fasting blood glucose and random blood glucose levels. The complex also improved the organ index, oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) results of db/db mice, and some of the indicators were similar to those of the positive control group after treatment with the complex. The histopathology study showed significant improvements in the liver, kidney, pancreas and skeletal muscle compared with the diabetes model group. The complex also showed a significant improvement in serum biochemical indices and antioxidant enzyme activities, as well as glycogen levels. The sub-acute toxicity study showed that the complex did not cause death or any dangerous symptoms during the study. In addition, the sub-acute toxicity study showed that the complex had no significant effect on the serum biochemical indices, antioxidant capacity and organs of normal mice. This study showed that [CrBCA3] had good hypoglycemic activity in vivo and had no sub-acute toxicity. This work provides an important reference for the development of functional hypoglycemic foods or drugs.


Subject(s)
Diabetes Mellitus, Experimental , Insulins , Animals , Antioxidants/therapeutic use , Blood Glucose , Chromium/chemistry , Chromium/toxicity , Diabetes Mellitus, Experimental/pathology , Genistein , Glycogen , Hypoglycemic Agents/chemistry , Insulin/therapeutic use , Insulins/therapeutic use , Mice
2.
Molecules ; 27(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36014535

ABSTRACT

Soybean is widely used as a kind of bean for daily consumption. Chickpea is increasingly utilised because of its good healthcare function. At present, using chickpeas could have better results than soybeans in some areas. Previous studies of the two legumes focused on certain components and failed to fully reveal the differences between the two legumes. Thus, understanding the comprehensive similarities and differences between the two legumes is necessary to apply and develop these legumes effectively. In this study, we performed a UPLC-ESI-MS/MS-based widely targeted metabolomics analysis on two legumes. A total of 776 metabolites (including primary metabolites and secondary metabolites) were detected, which were divided into more than a dozen broad categories. The differential analysis of these metabolites showed that there were 480 metabolites with significant differences in relative contents between the two legumes. Compared with soybean, the expression of 374 metabolites of chickpea was down-regulated and that of 106 metabolites was up-regulated. The metabolic pathway analysis showed significant differences in the flavonoids biosynthesis, phenylpropanoid biosynthesis, linoleic acid metabolism and alkaloid biosynthesis between the two legumes. The advantages and applicability of the two kinds of legumes were confirmed through the analysis of anti-diabetic components. Moreover, some novel compounds (with contents higher than that of soybean) with hypoglycaemic activity were found in chickpea. This study provides an important reference for the in-depth study and comparative application of soybean and chickpea.


Subject(s)
Cicer , Diabetes Mellitus , Fabaceae , Metabolomics/methods , Glycine max , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...