Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Biosens Bioelectron ; 267: 116834, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39368290

ABSTRACT

Coupling different energy harvesting technologies to obtain an excellent output signal is essential for the development of high-performance self-powered electrochemical sensors. Herein, a novel hydrovoltaic-photothermal coupling self-powered electrochemical aptasensing platform was designed for sensitive detection of microcystin (MC-RR) with a digital multimeter as a direct visual readout strategy. The straightforward ultrasonic method was employed to synthesize polyaniline (PANI) and bismuth oxybromide (BiOBr) nanosheets, which were then integrated as active components in a hydrovoltaic device. The unique layer structure of two-dimensional (2D) nanomaterials BiOBr can create flexible interlayer spaces to accommodate various ions and water molecules, which was beneficial to construct evaporation-driven channels. Meanwhile, the exceptional photothermal characteristics of polyaniline could accelerate the water evaporation rate, consequently boosting the migration speed of charge carriers and increasing output signal. Moreover, a digital multimeter was connected to the constructed sensor for real-time displaying the output signal. With the assistance of aptamer, a novel self-powered electrochemical aptasensing platform was constructed for sensitive detection of MC-RR. Under optimum conditions, the output signal of the hydrovoltaic-photothermal coupling cell was linearly related to the logarithm of MC-RR concentration in the range of 1 fM to 1 nM with a detection limit of 0.31 fM (S/N = 3). Furthermore, this sensor also exhibited many advantages such as high selectivity, good repeatability and portability. Such novel strategy not only offers a completely new general approach to construct high-performance self-powered devices for the detection of MC-RR, but also provides a new strategy for advancing the miniaturization and field application of self-powered electrochemical sensors.

2.
Nanotechnology ; 33(32)2022 May 20.
Article in English | MEDLINE | ID: mdl-35439735

ABSTRACT

In recent years, flexible pressure sensors have caused widespread concern for their extensive applications in human activity and health monitoring, robotics and prosthesis, as well as human-machine interface. Flexible pressure sensors in these applications are required to have a high sensitivity, large detective limit, linear response, fast response time, and mechanical stability. The mechanisms of capacitive, piezoresistive, and piezoelectric pressure sensors and the strategies to improve their performance are introduced. Sensing layers with microstructures have shown capability to significantly improve the performances of pressure sensors. Various fabrication methods for these structures are reviewed in terms of their pros and cons. Besides, the interference caused by environmental stimuli and internal stress from different directions leads to the infidelity of the signal transmission. Therefore, the anti-interference ability of flexible pressure sensors is highly desired. Several potential applications for flexible pressure sensors are also briefly discussed. Last, we conclude the future challenges for facilely fabricating flexible pressure sensors with high performance and anti-interference ability.

3.
Front Med (Lausanne) ; 9: 1100756, 2022.
Article in English | MEDLINE | ID: mdl-36687441

ABSTRACT

Introduction: Neutrophil plays a more and more important role in sepsis with paralysis of immunoregulation. Till now, there was no biomarker to identify and isolate the mature and immature neutrophils in sepsis patients. CD10 shows on mature neutrophils at the latest stages of its differentiation. Our study aimed to investigate whether CD10 was a valid biomarker for distinguishing immature and mature neutrophil subgroups under septic conditions and their immunoregulatory effects on lymphocytes. Methods: Totally 80 healthy volunteers and 107 sepsis patients were recruited in this study. Fluorescence-conjugated anti-CD66b, and anti-CD10 monoclonal antibodies followed by incubation with specific anti-fluorochrome microbeads was used to isolate different subgroups of neutrophils. T cell apoptotic assays and T cell proliferation assays followed by flow cytometry analysis were used to evaluate the immunoregulatory effect of each subgroup of neutrophils. Results: (1) The cytological morphology of CD10+ neutrophils was mature and that of CD10- neutrophils was immature in sepsis patients. (2) Mature CD10+ neutrophils inhibited the proliferation of T cell and immature CD10- neutrophils promoted the T cell proliferation. Conclusion: (1) CD10 was a good biomarker to distinguish mature from immature neutrophils in sepsis patients. (2) Mature CD10+ and immature CD10- neutrophils displayed opposite immunoregulatory effects on T cells in sepsis patients.

4.
Front Bioeng Biotechnol ; 9: 638744, 2021.
Article in English | MEDLINE | ID: mdl-33644025

ABSTRACT

Cellulose nanocrystal (CNC) has been applied in various fields due to its nano-structure, high aspect ratio, specific surface area and modulus, and abundance of hydroxy groups. In this work, CNC suspensions with different concentrations (0.4, 0.6, and 0.8%) were used as the adjuvant to improve the dispersion ability of multilayer graphene (MLG) in aqueous suspension, which is easy to be aggregated by van der Waals force between layers. In addition, N-methyl-2-pyrrolidone, ethanol, and ultrapure water were used as control groups. Zeta potential analysis and Fourier transform infrared spectroscopy showed that the stability of MLG/CNC has met the requirement, and the combination of CNC and MLG was stable in aqueous suspension. Results from transmission electron microscopy, Fourier transform infrared spectroscopy, and absorbance showed that MLG had a better dispersion performance in CNC suspensions, compared to the other solutions. Raman spectrum analysis showed that the mixtures of 1.0 wt% MLG with 0.4% CNC had the least defects and fewer layers of MLG. In addition, it is found that CNC suspension with 0.8% concentration showed the highest ability to disperse 1.0 wt% MLG with the most stable performance in suspension. Overall, this work proved the potential application of CNC as adjuvant in the field of graphene nanomaterials.

5.
Polymers (Basel) ; 11(10)2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31546601

ABSTRACT

Chitosan (CS) and graphene (Gr) were used to modify bamboo fiber fabrics to develop new bamboo fiber fabrics (CGBFs) with antimicrobial properties. The CGBFs were prepared by chemical crosslinking with CS as binder assistant and Gr as functional finishing agent. The method of firmly attaching the CS/Gr to bamboo fiber fabrics was explored. On the basis of the constant amount of CS, the best impregnation modification scheme was determined by changing the amount of Gr and evaluating the properties of the CS/Gr modified bamboo fiber fabrics. The results showed that the antibacterial rate of CGBFs with 0.3 wt% Gr was more than 99%, and compared with the control sample, the maximum tensile strength of CGBF increased by 1% in the longitudinal direction and 7.8% in the weft direction. The elongation at break increased by 2.2% in longitude and 57.3% in latitude. After 20 times of washing with WOB (without optical brightener) detergent solution, the antimicrobial rate can still be more than 70%. Therefore, these newly CS/Gr modified bamboo fiber fabrics hold great promise for antibacterial application in home decoration and clothing textiles.

SELECTION OF CITATIONS
SEARCH DETAIL