Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Exp Clin Cancer Res ; 42(1): 331, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38049865

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignancies and is characterized by reprogrammed metabolism. Ferroptosis, a programmed cell death dependent on iron, has emerged as a promising strategy for CRC treatment. Although small nucleolar RNAs are extensively involved in carcinogenesis, it is unclear if they regulate ferroptosis during CRC pathogenesis. METHODS: The dysregulated snoRNAs were identified using published sequencing data of CRC tissues. The expression of the candidate snoRNAs, host gene and target gene were assessed by real-time quantitative PCR (RT-qPCR), fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) and western blots. The biological function of critical molecules was investigated using in vitro and in vivo strategies including Cell Counting Kit-8 (CCK8), colony formation assay, flow cytometry, Fe2+/Fe3+, GSH/GSSG and the xenograft mice models. The ribosomal activities were determined by polysome profiling and O-propargyl-puromycin (OP-Puro) assay. The proteomics was conducted to clarify the downstream targets and the underlying mechanisms were validated by IHC, Pearson correlation analysis, protein stability and rescue assays. The clinical significance of the snoRNA was explored using the Cox proportional hazard model, receiver operating characteristic (ROC) and survival analysis. RESULTS: Here, we investigated the SNORA56, which was elevated in CRC tissues and plasma, and correlated with CRC prognosis. SNORA56 deficiency in CRC impaired proliferation and triggered ferroptosis, resulting in reduced tumorigenesis. Mechanistically, SNORA56 mediated the pseudouridylation of 28 S rRNA at the U1664 site and promoted the translation of the catalytic subunit of glutamate cysteine ligase (GCLC), an indispensable rate-limiting enzyme in the biosynthesis of glutathione, which can inhibit ferroptosis by suppressing lipid peroxidation. CONCLUSIONS: Therefore, the SNORA56/28S rRNA/GCLC axis stimulates CRC progression by inhibiting the accumulation of cellular peroxides, and it may provide biomarker and therapeutic applications in CRC.


Subject(s)
Colorectal Neoplasms , Ferroptosis , Glutamate-Cysteine Ligase , RNA, Small Nuclear , Animals , Humans , Mice , Carcinogenesis , Cell Line, Tumor , Cell Proliferation , Colorectal Neoplasms/genetics , Ferroptosis/genetics , In Situ Hybridization, Fluorescence , RNA, Ribosomal , RNA, Small Nuclear/genetics
2.
Oncogene ; 42(41): 3035-3046, 2023 10.
Article in English | MEDLINE | ID: mdl-37620450

ABSTRACT

Evidence indicates that small nucleolar RNAs (snoRNAs) participate in tumorigenesis and development and could be promising biomarkers for colorectal cancer (CRC). Here, we examine the profile of snoRNAs in CRC and find that expression of SNORD11B is increased in CRC tumor tissues and cell lines, with a significant positive correlation between SNORD11B expression and that of its host gene NOP58. SNORD11B promotes CRC cell proliferation and invasion and inhibits apoptosis. Mechanistically, SNORD11B promotes the processing and maturation of 18 S ribosomal RNA (rRNA) by mediating 2'-O-methylated (Nm) modification on the G509 site of 18 S rRNA. Intriguingly, SNORD11B mediates Nm modification on the G225 site of MIRLET7A1HG (pri-let-7a) with a canonical motif, resulting in degradation of pri-let-7a, inhibition of DGCR8 binding, reduction in mature tumor suppressor gene let-7a-5p expression, and upregulation of downstream oncogene translation. SNORD11B performs comparably to CEA and CA199 in diagnosing CRC. High expression of SNORD11B is significantly correlated with a more advanced TNM stage and lymph node metastasis, which indicates poor prognosis.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Methylation , RNA-Binding Proteins/genetics , Carcinogenesis/genetics , Colorectal Neoplasms/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
3.
Clin Transl Med ; 13(4): e1239, 2023 04.
Article in English | MEDLINE | ID: mdl-37070251

ABSTRACT

BACKGROUND: Accumulating studies have shown that La-related protein 1 (LARP1) is involved in the occurrence and development of various tumours. However, the expression pattern and biological role of LARP1 in hepatoblastoma (HB) remain unclear so far. METHODS: LARP1 expression level in HB and adjacent normal liver tissues was analysed by qRT-PCR, Western blotting and immunohistochemistry assays. The prognostic significance of LARP1 was evaluated by Kaplan-Meier method and multivariate Cox regression analysis. In vitro and in vivo functional assays were implemented to clarify the biological effects of LARP1 on HB cells. Mechanistically, the regulatory roles of O-GlcNAcylation and circCLNS1A in LARP1 expression were investigated by co-immunoprecipitation (co-IP), immunofluorescence, RNA immunoprecipitation (RIP), RNA pull-down and protein stability assays. Moreover, RNA-sequencing, co-IP, RIP, mRNA stability and poly(A)-tail length assays were performed to investigate the association between LARP1 and DKK4. The expression and diagnostic significance of plasma DKK4 protein in multi-centre cohorts were evaluated by ELISA and ROC curves. RESULTS: LARP1 mRNA and protein levels were remarkably elevated in HB tissues and associated with worse prognosis of HB patients. LARP1 knockdown abolished cell proliferation, triggered cell apoptosis in vitro as well as prohibited tumour growth in vivo, whereas LARP1 overexpression incited HB progression. Mechanistically, O-GlcNAcylation of LARP1 Ser672 by O-GlcNAc transferase strengthened its binding to circCLNS1A and then protected LARP1 from TRIM-25-mediated ubiquitination and proteolysis. LARP1 upregulation subsequently led to DKK4 mRNA stabilisation by competitively interacting with PABPC1 to prevent DKK4 mRNA from B-cell translocation gene 2-dependent deadenylation and degradation, thus facilitating ß-catenin protein expression and nuclear import. CONCLUSION: This study indicates that upregulated protein level of O-GlcNAcylated LARP1 mediated by circCLNS1A promotes the tumorigenesis and progression of HB through LARP1/DKK4/ß-catenin axis. Hence, LARP1 and DKK4 are promising therapeutical target and diagnostic/prognostic plasma biomarker for HB.


Subject(s)
Hepatoblastoma , Liver Neoplasms , Ribonucleoproteins , Humans , beta Catenin/metabolism , Hepatoblastoma/diagnosis , Hepatoblastoma/genetics , Intercellular Signaling Peptides and Proteins/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , RNA, Messenger/genetics , RNA, Circular/genetics , Ion Channels/genetics , Ion Channels/metabolism , Ribonucleoproteins/genetics , Ribonucleoproteins/metabolism , SS-B Antigen
4.
Cell Death Discov ; 9(1): 36, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36717552

ABSTRACT

Hepatoblastoma (HB) is the most common paediatric liver malignancy. Dysregulation of small nucleolar RNAs (snoRNAs) is a critical inducer of tumour initiation and progression. However, the association between snoRNAs and HB remains unknown. Here, we conducted snoRNA expression profiling in HB by snoRNA sequencing and identified a decreased level of SNORA14A, a box H/ACA snoRNA, in HB tissues. Low expression of SNORA14A was correlated with PRETEXT stage and metastasis in patients. Functionally, overexpression of SNORA14A suppressed HB cell proliferation and triggered cell apoptosis and G2/M phase arrest. Mechanistically, SNORA14A overexpression promoted the processing and maturation of the 18 S ribosomal RNA (rRNA) precursor to increase succinate dehydrogenase subunit B (SDHB) protein levels. In accordance with SNORA14A downregulation, SDHB protein expression was significantly reduced in HB tissues and cells, accompanied by abnormal accumulation of succinate. Overexpression of SDHB showed antiproliferative and proapoptotic effects and the capacity to induce G2/M phase arrest, while succinate dose-dependently stimulated HB cell growth. Furthermore, the inhibition of SNORA14A in HB malignant phenotypes was mediated by SDHB upregulation-induced reduction of cellular succinate levels. Therefore, the SNORA14A/18 S rRNA/SDHB axis suppresses HB progression by preventing cellular accumulation of the oncometabolite succinate and provides promising prognostic biomarkers and novel therapeutic targets for HB.

5.
Clin Transl Med ; 12(5): e778, 2022 05.
Article in English | MEDLINE | ID: mdl-35522946

ABSTRACT

BACKGROUND: Solute carrier family 7 member 11 (SLC7A11) is overexpressed in multiple human tumours and functions as a transporter importing cystine for glutathione biosynthesis. It promotes tumour development in part by suppressing ferroptosis, a newly identified form of cell death that plays a pivotal role in the suppression of tumorigenesis. However, the role and underlying mechanisms of SLC7A11-mediated ferroptosis in hepatoblastoma (HB) remain largely unknown. METHODS: Reverse transcription quantitative real-time PCR (RT-qPCR) and western blotting were used to measure SLC7A11 levels. Cell proliferation, colony formation, lipid reactive oxygen species (ROS), MDA concentration, 4-HNE, GSH/GSSG ratio and cell death assays as well as subcutaneous xenograft experiments were used to elucidate the effects of SLC7A11 in HB cell proliferation and ferroptosis. Furthermore, MeRIP-qPCR, dual luciferase reporter, RNA pulldown, RNA immunoprecipitation (RIP) and RACE-PAT assays were performed to elucidate the underlying mechanism through which SLC7A11 was regulated by the m6A modification in HB. RESULTS: SLC7A11 expression was highly upregulated in HB. SLC7A11 upregulation promoted HB cell proliferation in vitro and in vivo, inhibiting HB cell ferroptosis. Mechanistically, SLC7A11 mRNA exhibited abnormal METTL3-mediated m6A modification, which enhanced its stability and expression. IGF2 mRNA-binding protein 1 (IGF2BP1) was identified as the m6A reader of SLC7A11, enhancing SLC7A11 mRNA stability and expression by inhibiting SLC7A11 mRNA deadenylation in an m6A-dependent manner. Moreover, IGF2BP1 was found to block BTG2/CCR4-NOT complex recruitment via competitively binding to PABPC1, thereby suppressing SLC7A11 mRNA deadenylation. CONCLUSIONS: Our findings demonstrated that the METTL3-mediated SLC7A11 m6A modification enhances HB ferroptosis resistance. The METTL3/IGF2BP1/m6A modification promotes SLC7A11 mRNA stability and upregulates its expression by inhibiting the deadenylation process. Our study highlights a critical role of the m6A modification in SLC7A11-mediated ferroptosis, providing a potential strategy for HB therapy through blockade of the m6A-SLC7A11 axis.


Subject(s)
Amino Acid Transport System y+ , Ferroptosis , Hepatoblastoma , Immediate-Early Proteins , Liver Neoplasms , Adenosine/analogs & derivatives , Adenosine/pharmacology , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Animals , Ferroptosis/genetics , Hepatoblastoma/genetics , Humans , Immediate-Early Proteins/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Messenger/genetics , Tumor Suppressor Proteins/metabolism
6.
Cell Death Dis ; 11(7): 507, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32632107

ABSTRACT

Phosphoribosylaminoimidazole carboxylase, phosphoribosylaminoimidazole succinocarboxamide synthetase (PAICS), an essential enzyme involved in de novo purine biosynthesis, is connected with formation of various tumors. However, the specific biological roles and related mechanisms of PAICS in gastric cancer (GC) remain unclear. In the present study, we identified for the first time that PAICS was significantly upregulated in GC and high expression of PAICS was correlated with poor prognosis of patients with GC. In addition, knockdown of PAICS significantly induced cell apoptosis, and inhibited GC cell growth both in vitro and in vivo. Mechanistic studies first found that PAICS was engaged in DNA damage response, and knockdown of PAICS in GC cell lines induced DNA damage and impaired DNA damage repair efficiency. Further explorations revealed that PAICS interacted with histone deacetylase HDAC1 and HDAC2, and PAICS deficiency decreased the expression of DAD51 and inhibited its recruitment to DNA damage sites by impairing HDAC1/2 deacetylase activity, eventually preventing DNA damage repair. Consistently, PAICS deficiency enhanced the sensitivity of GC cells to DNA damage agent, cisplatin (CDDP), both in vitro and in vivo. Altogether, our findings demonstrate that PAICS plays an oncogenic role in GC, which act as a novel diagnosis and prognostic biomarker for patients with GC.


Subject(s)
Carcinogenesis/pathology , DNA Damage , Histone Deacetylase 1/metabolism , Histone Deacetylase 2/metabolism , Peptide Synthases/metabolism , Stomach Neoplasms/enzymology , Stomach Neoplasms/pathology , Animals , Apoptosis/genetics , Carcinogenesis/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Cisplatin/pharmacology , DNA Repair , Gene Expression Regulation, Enzymologic , Gene Knockdown Techniques , HEK293 Cells , Humans , Male , Mice, Inbred BALB C , Mice, Nude , Models, Biological , Peptide Synthases/deficiency , Prognosis , Protein Binding , Up-Regulation/genetics
8.
Mol Cancer ; 19(1): 24, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-32019547

ABSTRACT

After the publication of this work [1], the authors noticed that the affiliations were incorrectly provided. Updated affiliation section is provided in this paper.

9.
Mol Cancer ; 18(1): 188, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31870368

ABSTRACT

BACKGROUND: N6-Methyladenosine (m6A) modification has been implicated in many biological processes. It is important for the regulation of messenger RNA (mRNA) stability, splicing, and translation. However, its role in cancer has not been studied in detail. Here we investigated the biological role and underlying mechanism of m6A modification in hepatoblastoma (HB). METHODS: We used Reverse transcription quantitative real-time PCR (RT-qPCR) and Western blotting to determine the expression of m6A related factors. And we clarified the effects of these factors on HB cells using cell proliferation assay, colony formation, apoptotic assay. Then we investigated of methyltransferase-like 13 (METTL3) and its correlation with clinicopathological features and used xenograft experiment to check METTL3 effect in vivo. m6A-Seq was used to profiled m6A transcriptome-wide in hepatoblastoma tumor tissue and normal tissue. Finally, methylated RNA immunoprecipitation (MeRIP) assay, RNA remaining assay to perform the regulator mechanism of MEETL3 on the target CTNNB1 in HB. RESULTS: In this research, we discovered that m6A modifications are increased in hepatoblastoma, and METTL3 is the main factor involved with aberrant m6A modification. We also profiled m6A across the whole transcriptome in hepatoblastoma tumor tissues and normal tissues. Our findings suggest that m6A is highly expressed in hepatoblastoma tumors. Also, m6A is enriched not only around the stop codon, but also around the coding sequence (CDS) region. Gene ontology analysis indicates that m6A mRNA methylation contributes significantly to regulate the Wnt/ß-catenin pathway. Reduced m6A methylation can lead to a decrease in expression and stability of the CTNNB1. CONCLUSION: Overall our findings suggest enhanced m6A mRNA methylation as an oncogenic mechanism in hepatoblastoma, METTL3 is significantly up-regulated in HB and promotes HB development. And identify CTNNB1 as a regulator of METTL3 guided m6A modification in HB.

10.
Article in English | MEDLINE | ID: mdl-31637018

ABSTRACT

O-linked-ß-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) and phosphorylation are critical posttranslational modifications that are involved in regulating the functions of proteins involved in tumorigenesis and the development of various solid tumors. However, a detailed characterization of the patterns of these modifications at the peptide or protein level in hepatoblastoma (HB), a highly malignant primary hepatic tumor with an extremely low incidence in children, has not been performed. Here, we examined O-GlcNAc-modified or phospho-modified peptides and proteins in HB through quantitative proteomic analysis of HB tissues and paired normal liver tissues. Our results identified 114 O-GlcNAcylated peptides belonging to 78 proteins and 3494 phosphorylated peptides in 2088 proteins. Interestingly, 41 proteins were modified by both O-GlcNAcylation and phosphorylation. These proteins are involved in multiple molecular and cellular processes, including chromatin remodeling, transcription, translation, transportation, and organelle organization. In addition, we verified the accuracy of the proteomics results and found a competitive inhibitory effect between O-GlcNAcylation and phosphorylation of HSPB1. Further, O-GlcNAcylation modification of HSPB1 promoted proliferation and enhanced the chemotherapeutic resistance of HB cell lines in vitro. Collectively, our research suggests that O-GlcNAc-modified and/or phospho-modified proteins may play a crucial role in the pathogenesis of HB.

11.
Cell Signal ; 63: 109384, 2019 11.
Article in English | MEDLINE | ID: mdl-31394193

ABSTRACT

Ferroptosis is a metabolism-related cell death. Stimulating ferroptosis in liver cancer cells is a strategy to treat liver cancer. However, how to eradicate liver cancer cells through ferroptosis and the obstacles to inducing ferroptosis in liver cancer remain unclear. Here, we observed that erastin suppressed the malignant phenotypes of liver cancer cells by inhibiting O-GlcNAcylation of c-Jun and further inhibited protein expression, transcription activity and nuclear accumulation of c-Jun. Overexpression of c-Jun-WT with simultaneous PuGNAc treatment conversely inhibited erastin-induced ferroptosis, whereas overexpression of c-Jun-WT alone or overexpression of c-Jun-S73A (a non-O-GlcNAcylated form of c-Jun) with PuGNAc treatment did not exert a similar effect. GSH downregulation induced by erastin was restored by overexpression of c-Jun-WT with simultaneous PuGNAc treatment. In addition, overexpression of c-Jun-WT, but not its S73A mutant, induced PSAT1 and CBS transcription via directly binding to their promoter regions, suggesting that GSH synthesis is regulated by O-GlcNAcylated c-Jun. A positive correlation between c-Jun O-GlcNAcylation and GSH was observed in clinical samples. Collectively, O-GlcNAcylated c-Jun represents an obstructive factor to ferroptosis, and targeting O-GlcNAcylated c-Jun might be helpful for treating liver cancer.


Subject(s)
Ferroptosis , Glutathione/metabolism , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms/metabolism , Piperazines/pharmacology , Proto-Oncogene Proteins c-jun/metabolism , Animals , Cell Line, Tumor , Glycosylation , Humans , Mice, Nude
12.
Redox Biol ; 24: 101211, 2019 06.
Article in English | MEDLINE | ID: mdl-31108460

ABSTRACT

Ferroptosis is an outcome of metabolic disorders and closely linked to liver cancer. However, the mechanism underlying the fine regulation of ferroptosis in liver cancer remains unclear. Here, we have identified two categories of genes: ferroptosis up-regulated factors (FUF) and ferroptosis down-regulated factors (FDF), which stimulate and suppress ferroptosis by affecting the synthesis of GSH. Furthermore, FUF are controlled by one transcription factor HIC1, while FDF controlled by another transcription factor HNF4A. Occurrence of ferroptosis might depend on the histone acetyltransferase KAT2B. Upon stimulation of ferroptosis, dissociation of KAT2B prevents HNF4A from binding to the FDF promoter. This effect happens prior to the recruitment of KAT2B to the FUF promoter, which facilitates HIC1 binding to transcribe FUF. Clinically, HIC1 and HNF4A conversely correlate with tumor stage in liver cancer. Patients with lower HIC1 and higher HNF4A exhibit poorer prognostic outcomes. Disrupting the balance between HIC1 and HNF4A might be helpful in treating liver cancer.


Subject(s)
Ferroptosis/genetics , Gene Expression Regulation, Neoplastic , Liver Neoplasms/genetics , Transcription, Genetic , Animals , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Models, Animal , Female , Glutathione/metabolism , Humans , Liver Neoplasms/metabolism , Mice , Mice, Knockout , Models, Biological , Promoter Regions, Genetic
13.
Theranostics ; 9(3): 900-919, 2019.
Article in English | MEDLINE | ID: mdl-30809316

ABSTRACT

Circular RNAs (circRNAs), a novel class of endogenous RNAs, have been recently shown to participate in cellular development and several pathophysiological processes. The identification of dysregulated circRNAs and their function in cancer have attracted considerable attention. Nevertheless, the expression profile and role of circRNAs in human hepatoblastoma (HB) remain to be studied. In this report, we analyzed the expression prolife of circRNAs in HB tissues and identified circHMGCS1 (3-hydroxy-3-methylglutaryl-CoA synthase 1; hsa_circ_0072391) as a remarkably upregulated circRNA. Methods: The expression prolife of circRNAs in HB tissues were investigated through circRNA sequencing analyses. ISH and qRT-PCR assays were performed to measure the expression level of circHMGCS1. The effect of knocking down circHMGCS1 in HB cells in vitro and in vivo were evaluated by colony formation assay, flow cytometry, xenograft tumors assay and untargeted metabolomics assay. MRE analysis and dual luciferase assay were performed to explore the underlying molecular mechanisms. Results: HB patients with high circHMGCS1 expression have shorted overall survival. Knockdown of circHMGCS1 inhibits HB cells proliferation and induces apoptosis. CircHMGCS1 regulates IGF2 and IGF1R expression via sponging miR-503-5p, and affects the downstream PI3K-Akt signaling pathway to regulate HB cell proliferation and glutaminolysis. Conclusions: The circHMGCS1/miR-503-5p/IGF-PI3K-Akt axis regulates the proliferation, apoptosis and glutaminolysis of HB cells, implying that circHMGCS1 is a promising therapeutic target and prognostic marker for HB patients.


Subject(s)
Cell Proliferation , Glutamine/metabolism , Hepatoblastoma/pathology , Hydroxymethylglutaryl-CoA Synthase/genetics , RNA, Circular/metabolism , Signal Transduction , Somatomedins/metabolism , Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation , Hepatoblastoma/mortality , Hepatocytes/pathology , Humans , RNA, Circular/genetics , Survival Analysis
14.
Carcinogenesis ; 40(9): 1121-1131, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-30715269

ABSTRACT

Emerging studies have revealed that O-GlcNAcylation plays pivotal roles in the tumorigenesis of colorectal cancers (CRCs). However, the underlying mechanism still remains largely unknown. Here, we demonstrated that Yin Yang 1 (YY1) was O-GlcNAcylated by O-GlcNAc transferase (OGT) and O-GlcNAcylation of YY1 could increase the protein expression by enhancing its stability. O-GlcNAcylation facilitated transformative phenotypes of CRC cell in a YY1-dependent manner. Also, O-GlcNAcylation stimulates YY1-dependent transcriptional activity. Besides, we also identified the oncoproteins, SLC22A15 and AANAT, which were regulated by YY1 directly, are responsible for the YY1 stimulated tumorigenesis. Furthermore, we identified the main putative O-GlcNAc site of YY1 at Thr236, and mutating of this site decreased the pro-tumorigenic capacities of YY1. We concluded that O-GlcNAcylation of YY1 stimulates tumorigenesis in CRC cells by targeting SLC22A15 and AANAT, suggesting that YY1 O-GlcNAcylation might be a potential effective therapeutic target for treating CRC.

15.
Cell Death Dis ; 9(11): 1091, 2018 10 25.
Article in English | MEDLINE | ID: mdl-30361504

ABSTRACT

Some types of circular RNA (circRNA) are aberrantly expressed in human diseases including hepatocellular carcinoma (HCC). However, its regulation mechanism and diagnostic roles are largely unknown. Here, we identified that circRNA_104075 (circ_104075) was highly expressed in HCC tissues, cell lines and serum. Mechanistically, HNF4a bound to the -1409 to -1401 region of the circ_104075 promoter to stimulate the expression of circ_104075. Moreover, circ_104075 acted as a ceRNA to upregulate YAP expression by absorbing miR-582-3p. Interestingly, an N6-methyladenosine (m6A) motif was identified in the 353-357 region of YAP 3'UTR, and this m6A modification was essential for the interaction between miR-582-3p and YAP 3'UTR. Further, the diagnostic performance of circ_104075 was evaluated. The area under the receiver operating characteristic (AUC-ROC) for circ_104075 was 0.973 with a sensitivity of 96.0% and a specificity of 98.3%. Collectively, we determined that circ_104075 was highly expressed in HCC and elucidated its upstream and downstream regulatory mechanisms. circ_104075 additionally has the potential to serve as a new diagnostic biomarker in HCC. Targeting circ_104075 may provide new strategies in HCC diagnosis and therapy.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis/metabolism , Carcinoma, Hepatocellular/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Liver Neoplasms/metabolism , RNA, Circular/metabolism , Transcription Factors/metabolism , Adenosine/analogs & derivatives , Adenosine/metabolism , Adult , Aged , Animals , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/blood , Cell Survival , Female , Hep G2 Cells , Hepatocyte Nuclear Factor 4/genetics , Humans , Liver Neoplasms/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , Middle Aged , Promoter Regions, Genetic , Protein Interaction Domains and Motifs , ROC Curve , YAP-Signaling Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...