Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829698

ABSTRACT

Whether green light promotes or represses plant growth is an unresolved but important question, warranting a global meta-analysis of published data. We collected 136 datasets from 48 publications on 17 crop species, and calculated the green light effect for a range of plant traits. For each trait the effect was calculated as the ratio between the trait value attained under a red/blue background light plus green, divided by the value attained under the background light only, both having the same light intensity. Generally, green light strongly increased intrinsic water use efficiency (15%), the shoot-to-root ratio (13%), and decreased stomatal conductance (-15%). Moreover, green light increased fresh weight to a small extent (4%), but not plant dry weight, resulting in a reduced dry matter content (-2%). Hence, green light is similarly effective at increasing biomass as red and blue light. Green light also showed to increase leaf area (7%) and specific leaf area (4%; i.e., thinner leaves). Furthermore, effects of green light were species-dependent, with positive effects on biomass for lettuce and microgreens, and negative effects in basil and tomato. Our data suggest that future research should focus on the role of green light in modulating water loss, its putative role as a shade signal, and the causes for its species-specific effects on crop biomass.

2.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003716

ABSTRACT

Ascorbate (AsA), an essential antioxidant for both plants and the human body, plays a vital role in maintaining proper functionality. Light plays an important role in metabolism of AsA in horticultural plants. Our previous research has revealed that subjecting lettuce to high light irradiation (HLI) (500 µmol·m-2·s-1) at the end-of-production (EOP) stage effectively enhances AsA levels, while the optimal light quality for AsA accumulation is still unknown. In this study, four combinations of red (R) and blue (B) light spectra with the ratio of 1:1 (1R1B), 2:1 (2R1B), 3:1 (3R1B), and 4:1 (4R1B) were applied to investigate the biosynthesis and recycling of AsA in lettuce. The results demonstrated that the AsA/total-AsA content in lettuce leaves was notably augmented upon exposure to 1R1B and 2R1B. Interestingly, AsA levels across all treatments increased rapidly at the early stage (2-8 h) of irradiation, while they increased slowly at the late stage (8-16 h). The activity of L-galactono-1,4-lactone dehydrogenase was augmented under 1R1B treatment, which is pivotal to AsA production. Additionally, the activities of enzymes key to AsA cycling were enhanced by 1R1B and 2R1B treatments, including ascorbate peroxidase, dehydroascorbate reductase, and monodehydroascorbate reductase. Notably, hydrogen peroxide and malondialdehyde accumulation increased dramatically following 16 h of 1R1B and 2R1B treatments. In addition, although soluble sugar and starch contents were enhanced by EOP-HLI, this effect was comparatively subdued under the 1R1B treatment. Overall, these results indicated that AsA accumulation was improved by irradiation with a blue light proportion of over 50% in lettuce, aligning with the heightened activities of key enzymes responsible for AsA synthesis, as well as the accrual of hydrogen peroxide. The effective strategy holds the potential to enhance the nutritional quality of lettuce while bolstering its antioxidant defenses.


Subject(s)
Antioxidants , Lactuca , Humans , Antioxidants/metabolism , Lactuca/metabolism , Hydrogen Peroxide , Ascorbic Acid/metabolism , Plant Leaves/metabolism , Ascorbate Peroxidases/metabolism
3.
Int J Mol Sci ; 24(20)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37894735

ABSTRACT

Light plays a dominant role in the biosynthesis and accumulation of photosynthetic products. However, the metabolism and translocation of photosynthetic products in plants under different light spectra remain elusive. In this study, tomato (Solanum lycopersicum L.) seedlings were treated with different light spectra delivered by light-emitting diodes (LEDs) with the same photosynthetic photon flux density at 300 µmol m-2 s-1, including monochromatic red (660 nm, R), blue (450 nm, B), sun-like white (W, 380-780 nm), or a combination of R and B lights (R:B = 1:1, RB). Compared with W, the biomass distribution ratio for leaves under R, B, and RB decreased by 5.01-9.53%, while the ratio for stems and roots increased by 3.71-6.92% and 0.14-2.81%, respectively. The photosynthetic carbon distribution expressed as 13C enrichment was higher in stems and roots under RB and R, while B led to more 13C transported from leaves and enriched in stems when compared with W. Meanwhile, RB led to significant increases in the activities of phosphate synthase (SPS), sucrose synthase (SS), vacuolar acid invertase (VI), and neutral invertase (NI). The R was more efficient in increasing the activity of SPS and SS, while B was more effective in promoting the activity of VI and NI. The transcript levels of SPS, SS3, NI6, and VI were upregulated under R, B, and RB. However, the transcript patterns of SPS, SS3, NI6, and VI were not consistent with the changes in their encoded enzymes, especially the transcript patterns of SPS and SS3. Our study suggests that the red- and blue-light-induced long-distance and short-distance transport of photosynthetic products in plants, respectively, might result from different regulation of sucrose-metabolizing enzymes from transcriptional and post-transcriptional levels.


Subject(s)
Solanum lycopersicum , Seedlings/metabolism , Carbon/metabolism , Light , beta-Fructofuranosidase , Sucrose/metabolism
4.
Front Plant Sci ; 12: 649283, 2021.
Article in English | MEDLINE | ID: mdl-34745154

ABSTRACT

Light plays a pivotal role in plant growth, development, and stress responses. Green light has been reported to enhance plant drought tolerance via stomatal regulation. However, the mechanisms of green light-induced drought tolerance in plants remain elusive. To uncover those mechanisms, we investigated the molecular responses of tomato plants under monochromatic red, blue, and green light spectrum with drought and well-water conditions using a comparative transcriptomic approach. The results showed that compared with monochromatic red and blue light treated plants, green light alleviated the drought-induced inhibition of plant growth and photosynthetic capacity, and induced lower stomatal aperture and higher ABA accumulation in tomato leaves after 9 days of drought stress. A total of 3,850 differentially expressed genes (DEGs) was identified in tomato leaves through pairwise comparisons. Functional annotations revealed that those DEGs responses to green light under drought stress were enriched in plant hormone signal transduction, phototransduction, and calcium signaling pathway. The DEGs involved in ABA synthesis and ABA signal transduction both participated in the green light-induced drought tolerance of tomato plants. Compared with ABA signal transduction, more DEGs related to ABA synthesis were detected under different light spectral treatments. The bZIP transcription factor- HY5 was found to play a vital role in green light-induced drought responses. Furthermore, other transcription factors, including WRKY46 and WRKY81 might participate in the regulation of stomatal aperture and ABA accumulation under green light. Taken together, the results of this study might expand our understanding of green light-modulated tomato drought tolerance via regulating ABA accumulation and stomatal aperture.

5.
Plant Physiol Biochem ; 167: 806-815, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34530325

ABSTRACT

The red light (R) to far-red light (FR) ratio (R:FR) regulates plant responses to salt stress, but the regulation mechanism is still unclear. In this study, tomato seedlings were grown under half-strength Hoagland solution with or without 150 mM NaCl at two different R:FR ratios (7.4 and 0.8). The photosynthetic capacity, antioxidant enzyme activities, and the phenotypes at chloroplast ultrastructure and whole plant levels were investigated. The results showed that low R:FR significantly alleviated the damage of tomato seedlings from salt stress. On day 4, 8, and 12 at low R:FR, the maximum photochemical quantum yields (Fv/Fm) of photosystem II (PSII) were increased by 4.53%, 3.89%, and 16.49%, respectively; the net photosynthetic rates (Pn) of leaves were increased by 16.21%, 90.81%, and 118.00%, respectively. Low R:FR enhanced the integrity and stability of the chloroplast structure of salinity-treated plants through maintaining the high activities of antioxidant enzymes and mitigated the degradation rate of photosynthetic pigments caused by reactive oxygen species (ROS) under salt stress. The photosynthesis, antioxidant enzyme-related gene expression, and transcriptome sequencing analysis of tomato seedlings under different treatments were also investigated. Low R:FR promoted the de novo synthesis of D1 protein via triggering psbA expression, and upregulated the transcripts of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) related genes. Meanwhile, the transcriptome analysis confirmed the positive function of low R:FR on enhancing tomato salinity stress tolerance from the regulation of photosynthesis and ROS scavenging systems.


Subject(s)
Salt Tolerance , Solanum lycopersicum , Antioxidants , Photosynthesis , Plant Leaves , Seedlings
6.
Front Plant Sci ; 12: 650068, 2021.
Article in English | MEDLINE | ID: mdl-34025696

ABSTRACT

Photoperiod is a crucial inducer of plant flowering. Cycling DOF factors (CDFs) play pivotal roles in the flowering of long-day (LD) and short-day (SD) plants. However, the functions of CDFs in the photoperiod regulated flowering remain unclear in day-neutral plants. In the present study, tomato (Solanum lycopersicum L. cv. "Ailsa Craig") seedlings of the wild-type and transgenic lines of overexpressing CDFs were treated with different photoperiods. The flowering time and the expression pattern of SlCDFs and other FT-like genes were investigated. The results showed that tomato SlCDF1, SlCDF2, SlCDF3, SlCDF4, and SlCDF5 are homologs to Arabidopsis cycling DOF factor 1 (AtCDF1). SlCDF1-5 expression levels were influenced by the developmental stage and the tissue location, and notably, the expression patterns throughout light environments showed two opposite trends. Among the SlCDF1-5 overexpression transgenic lines, overexpressing SlCDF3 delayed flowering time in both LD (16 h light/8 h dark) and SD (8 h light/16 h dark) conditions. Furthermore, SlCDF3 led to an increase in the mRNA level of SlSP5G, a tomato FT-like gene, in LD conditions, while the transcription level of the other two FT-like genes, SlSP5G2 and SlSP5G3, were up-regulated in SD conditions. Taken together, at the transcription level, our results demonstrated that SlCDF3 played a significant role in controlling tomato flowering under LD and SD conditions, possibly through directly or indirectly regulating FT-like genes.

7.
Foods ; 9(6)2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32503134

ABSTRACT

Excessive accumulation of nitrates in vegetables is a common issue that poses a potential threat to human health. The absorption, translocation, and assimilation of nitrates in vegetables are tightly regulated by the interaction of internal cues (expression of related genes and enzyme activities) and external environmental factors. In addition to global food security, food nutritional quality is recognized as being of strategic importance by most governments and other agencies. Therefore, the identification and development of sustainable, innovative, and inexpensive approaches for increasing vegetable production and concomitantly reducing nitrate concentration are extremely important. Under controlled environmental conditions, optimal fertilizer/nutrient element management and environmental regulation play vital roles in producing vegetables with low nitrate content. In this review, we present some of the recent findings concerning the effects of environmental factors (e.g., light, temperature, and CO2) and fertilizer/nutrient solution management strategies on nitrate reduction in vegetables grown under controlled environments and discuss the possible molecular mechanisms. We also highlight several perspectives for future research to optimize the yield and nutrition quality of leafy vegetables grown in controlled environments.

8.
Front Plant Sci ; 10: 1563, 2019.
Article in English | MEDLINE | ID: mdl-31867029

ABSTRACT

Understanding the wavelength dependence of plant responses is essential for optimizing production and quality of indoor plant cultivation. UVA is the main component of solar UV radiation, but its role on plant growth is poorly understood. Here, two experiments were conducted to examine whether UVA supplementation is beneficial for indoor plant cultivation. Lettuce (Lactuca sativa L. cv. "Klee") was grown under mixed blue, red, and far-red light with photon flux density of 237 µmol m-2 s-1 in the growth room; photoperiod was 16 h. In the first experiment, three UVA intensities with peak wavelengths at 365 nm were used: 10 (UVA-10), 20 (UVA-20), and 30 (UVA-30) µmol m-2 s-1, respectively. In the second experiment, 10 µmol m-2 s-1 UVA radiation were given for 5 (UVA-5d), 10 (UVA-10d), and 15 (UVA-15d) days before harvest on day 15, respectively. Compared with control (no UVA), shoot dry weight was increased by 27%, 29%, and 15% in the UVA-10, UVA-20, and UVA-30 treatments, respectively, which correlated with 31% (UVA-10), 32% (UVA-20), and 14% (UVA-30) larger leaf area. Shoot dry weight under the treatments of UVA-5d, UVA-10d, and UVA-15d was increased by 18%, 32%, and 30%, respectively, and leaf area was increased by 15%-26%. For both experiments, UVA radiation substantially enhanced secondary metabolites accumulation, e.g. anthocyanin and ascorbic acid contents were increased by 17%-49% and 47%-80%, respectively. Moreover, plants grown under the UVA-30 treatment were stressed, as indicated by lipid peroxidation and lower maximum quantum efficiency of photosystem II photochemistry (Fv/Fm). We conclude that UVA supplementation not only stimulates biomass production in controlled environments, but also enhances secondary metabolite accumulation.

9.
J Agric Food Chem ; 67(49): 13577-13588, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31730344

ABSTRACT

Light-emitting diode (LED) based light sources, which can selectively and quantitatively provide different spectra, have been frequently applied to manipulate plant growth and development. In this study, the effects of different LED light spectra on the growth, phenolic compounds profile, antioxidant capacity, and transcriptional changes in genes regulating phenolic biosynthesis in soybean microgreens were investigated. The results showed that light illumination decreased the seedling length and yield but increased phenolic compound content. Blue light and ultraviolet-A (UV-A) induced significant increases in total phenolic and total flavonoid content, as compared with the white light control. Sixty-six phenolic compounds were identified in the soybean samples, of which isoflavone, phenolic acid, and flavonol were the main components. Ten phenolic compounds obtained from the orthogonal partial least-squares discriminant analysis (OPLS-DA) were reflecting the effect of light spectra. The antioxidant capacity was consistent with the phenolic metabolite levels, which showed higher levels under blue light and UV-A compared with the control. The highest transcript levels of phenolic biosynthesis-related genes were observed under blue light and UV-A. The transcript levels of GmCHI, GmFLS, and GmIOMT were also upregulated under far-red and red light. Taken together, our findings suggested that the application of LED light could pave a green and effective way to produce phenolic compound-enriched soybean microgreens with high nutritional quality, which could stimulate further investigations for improving plant nutritional value and should have a wide impact on maintaining human health.


Subject(s)
Antioxidants/metabolism , Glycine max/radiation effects , Phenols/metabolism , Plant Proteins/genetics , Antioxidants/chemistry , Light , Phenols/chemistry , Plant Proteins/metabolism , Seedlings/chemistry , Seedlings/genetics , Seedlings/metabolism , Seedlings/radiation effects , Glycine max/genetics , Glycine max/growth & development , Glycine max/metabolism
10.
Physiol Plant ; 164(2): 226-240, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29493775

ABSTRACT

Red and blue light are the most important light spectra for driving photosynthesis to produce adequate crop yield. It is also believed that green light may contribute to adaptations to growth. However, the effects of green light, which can trigger specific and necessary responses of plant growth, have been underestimated in the past. In this study, lettuce (Lactuca sativa L.) was exposed to different continuous light (CL) conditions for 48 h by a combination of red and blue light-emitting diodes (LEDs) supplemented with or without green LEDs, in an environmental-controlled growth chamber. Green light supplementation enhanced photosynthetic capacity by increasing net photosynthetic rates, maximal photochemical efficiency, electron transport for carbon fixation (JPSII ) and chlorophyll content in plants under the CL treatment. Green light decreased malondialdehyde and H2 O2 accumulation by increasing the activities of superoxide dismutase (EC 1.15.1.1) and ascorbate peroxidase (EC 1.11.1.11) after 24 h of CL. Supplemental green light significantly increased the expression of photosynthetic genes LHCb and PsbA from 6 to 12 h, and these gene expressions were maintained at higher levels than those under other light conditions between 12 and 24 h. However, a notable downregulation of both LHCb and PsbA was observed during 24 to 48 h. These results indicate that the effects of green light on lettuce plant growth, via enhancing activity of particular components of antioxidative enzyme system and promoting of LHCb and PsbA expression to maintain higher photosynthetic capacity, alleviated a number of the negative effects caused by CL.


Subject(s)
Light , Chlorophyll/metabolism , Lactuca/metabolism , Lactuca/radiation effects , Photosynthesis/drug effects , Plant Development/radiation effects
11.
Ying Yong Sheng Tai Xue Bao ; 24(3): 753-8, 2013 Mar.
Article in Chinese | MEDLINE | ID: mdl-23755491

ABSTRACT

Taking the tomato (Solanum lycopersicum) cultivar "Kuiguan108" as test object, a comparative study was made on the effects of outer type and built-in type straw bio-reactors on the CO2 concentration, air relative humidity , air vapor pressure deficit in the solar greenhouse during the tomato growth over autumn-delayed cultivation as well as the effects of the bio-reactors on the tomato growth and photosynthetic performance. As compared with that in CK, the average CO2 concentration in the greenhouse with outer type straw bio-reactor at 9:30-11:30 and 14:30-15:00 on sunny days was increased significantly by 207. 3 and 103 micromol . mol-1 , respectively, and the ave-rage CO2 concentration in the greenhouse with built-in straw bio-reactor at 9:30-11:30 on sunny days was raised by 19.0 micromol . mol-1. Both the outer type and the built-in type straw bio-reactors promoted the tomato plant height growth and early flowering, enhanced the plant net photosynthetic rate and the yield per plant and per unit area significantly, and decreased the plant transpiration rate at the stages of vegetative growth and fruit- bearing significantly. Nevertheless, as compared with built-in type straw bio-reactor, outer type straw bio-reactor was more suitable for the autumn- delayed cultivation of tomato in solar greenhouse.


Subject(s)
Agriculture/methods , Photosynthesis/physiology , Plant Stems/chemistry , Refuse Disposal/methods , Solanum lycopersicum/growth & development , Bioreactors , Ecosystem , Solanum lycopersicum/physiology , Microclimate , Oryza/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...