Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Death Dis ; 14(2): 129, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36792589

ABSTRACT

Lipid and cholesterol metabolism play a crucial role in tumor cell behavior and in shaping the tumor microenvironment. In particular, enzymatic and non-enzymatic cholesterol metabolism, and derived metabolites control dendritic cell (DC) functions, ultimately impacting tumor antigen presentation within and outside the tumor mass, dampening tumor immunity and immunotherapeutic attempts. The mechanisms accounting for such events remain largely to be defined. Here we perturbed (oxy)sterol metabolism genetically and pharmacologically and analyzed the tumor lipidome landscape in relation to the tumor-infiltrating immune cells. We report that perturbing the lipidome of tumor microenvironment by the expression of sulfotransferase 2B1b crucial in cholesterol and oxysterol sulfate synthesis, favored intratumoral representation of monocyte-derived antigen-presenting cells, including monocyte-DCs. We also found that treating mice with a newly developed antagonist of the oxysterol receptors Liver X Receptors (LXRs), promoted intratumoral monocyte-DC differentiation, delayed tumor growth and synergized with anti-PD-1 immunotherapy and adoptive T cell therapy. Of note, looking at LXR/cholesterol gene signature in melanoma patients treated with anti-PD-1-based immunotherapy predicted diverse clinical outcomes. Indeed, patients whose tumors were poorly infiltrated by monocytes/macrophages expressing LXR target genes showed improved survival over the course of therapy. Thus, our data support a role for (oxy)sterol metabolism in shaping monocyte-to-DC differentiation, and in tumor antigen presentation critical for responsiveness to immunotherapy. The identification of a new LXR antagonist opens new treatment avenues for cancer patients.


Subject(s)
Melanoma , Monocytes , Mice , Animals , Monocytes/metabolism , Cell Differentiation , Cholesterol/metabolism , Antigen Presentation , Dendritic Cells/metabolism , Tumor Microenvironment
2.
Immunity ; 55(4): 606-622.e6, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35358427

ABSTRACT

Lymph node (LN) stromal cells play a crucial role in LN development and in supporting adaptive immune responses. However, their origin, differentiation pathways, and transcriptional programs are still elusive. Here, we used lineage-tracing approaches and single-cell transcriptome analyses to determine origin, transcriptional profile, and composition of LN stromal and endothelial progenitors. Our results showed that all major stromal cell subsets and a large proportion of blood endothelial cells originate from embryonic Hoxb6+ progenitors of the lateral plate mesoderm (LPM), whereas lymphatic endothelial cells arise from Pax3+ progenitors of the paraxial mesoderm (PXM). Single-cell RNA sequencing revealed the existence of different Cd34+ and Cxcl13+ stromal cell subsets and showed that embryonic LNs contain proliferating progenitors possibly representing the amplifying populations for terminally differentiated cells. Taken together, our work identifies the earliest embryonic sources of LN stromal and endothelial cells and demonstrates that stromal diversity begins already during LN development.


Subject(s)
Endothelial Cells , Endothelial Cells/metabolism , Lymph Nodes , Sequence Analysis, RNA , Single-Cell Analysis , Stromal Cells , Transcription Factors/metabolism
3.
Part Fibre Toxicol ; 18(1): 23, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34134756

ABSTRACT

BACKGROUND: Widespread use of silver in its different forms raises concerns about potential adverse effects after ingestion, the main exposure route for humans. The aim of this study was to investigate in CD-1 (ICR) male mice the tissue distribution and in vivo effects of 4-week oral exposure to 0.25 and 1 mg Ag/kg bw 10 nm citrate coated silver nanoparticles (AgNPs) and 1 mg Ag/kg bw silver acetate (AgAc) at the end of treatment (EoT) and after 4 weeks of recovery. RESULTS: There were no treatment-related clinical signs and mortality, and no significant effects on body and organ weights at the EoT and after recovery. Treatment-related changes in hematology and clinical chemistry were found after recovery, the most relevant being a dose-dependent lymphopenia and increased triglycerides in AgNP-treated mice, and increased levels of urea in all treated groups, associated with decreased albumin only in AgAc-treated mice. At the EoT the highest silver concentration determined by Triple Quadrupole ICP-MS analysis was found in the brain, followed by testis, liver, and spleen; much lower concentrations were present in the small intestine and kidney. Tissue silver concentrations were slightly higher after exposure to AgAc than AgNPs and dose dependent for AgNPs. After recovery silver was still present in the brain and testis, highlighting slow elimination. No histopathological changes and absence of silver staining by autometallography were observed in the organs of treated mice. At the EoT GFAP (astrocytes) immunoreactivity was significantly increased in the hippocampus of AgNP-treated mice in a dose-dependent manner and Iba1 (microglial cells) immunoreactivity was significantly increased in the cortex of 1 mg/kg bw AgNP-treated mice. After recovery, a significant reduction of Iba1 was observed in the cortex of all treated groups. TEM analysis of the hippocampus revealed splitting of basement membrane of the capillaries and swelling of astrocytic perivascular end-feet in 1 mg/kg bw AgNP- and AgAc-treated mice at the EoT. CONCLUSIONS: Our study revealed accumulation and slow clearance of silver in the brain after oral administration of 10 nm AgNPs and AgAc at low doses in mice, associated with effects on glial cells and ultrastructural alterations of the Blood-Brain Barrier.


Subject(s)
Metal Nanoparticles/toxicity , Silver/toxicity , Administration, Oral , Animals , Brain , Male , Mice , Mice, Inbred ICR , Tissue Distribution
4.
Haematologica ; 105(10): 2440-2447, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33054085

ABSTRACT

Therapeutic strategies designed to tinker with cancer cell DNA damage response have led to the widespread use of PARP inhibitors for BRCA1/2-mutated cancers. In the haematological cancer multiple myeloma, we sought to identify analogous synthetic lethality mechanisms that could be leveraged upon established cancer treatments. The combination of ATR inhibition using the compound VX-970 with a drug eliciting interstrand cross-links, melphalan, was tested in in vitro, ex vivo, and most notably in vivo models. Cell proliferation, induction of apoptosis, tumor growth and animal survival were assessed. The combination of ATM inhibition with a drug triggering double strand breaks, doxorucibin, was also probed. We found that ATR inhibition is strongly synergistic with melphalan, even in resistant cells. The combination was dramatically effective in targeting myeloma primary patient cells and cell lines reducing cell proliferation and inducing apoptosis. The combination therapy significantly reduced tumor burden and prolonged survival in animal models. Conversely, ATM inhibition only marginally impacted on myeloma cell survival, even in combination with doxorucibin at high doses. These results indicate that myeloma cells extensively rely on ATR, but not on ATM, for DNA repair. Our findings posit that adding an ATR inhibitor such as VX-970 to established therapeutic regimens may provide a remarkably broad benefit to myeloma patients.


Subject(s)
Multiple Myeloma , Animals , Apoptosis , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , Cell Survival , DNA Damage , DNA Repair , Humans , Melphalan/pharmacology , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics
5.
Stem Cell Reports ; 12(6): 1260-1268, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31155505

ABSTRACT

Lymph nodes (LNs) are secondary lymphoid tissues that play a critical role in filtering the lymph and promoting adaptive immune responses. Surgical resection of LNs, radiation therapy, or infections may damage lymphatic vasculature and compromise immune functions. Here, we describe the generation of functional synthetic lympho-organoids (LOs) using LN stromal progenitors and decellularized extracellular matrix-based scaffolds, two basic constituents of secondary lymphoid tissues. We show that upon transplantation at the site of resected LNs, LOs become integrated into the endogenous lymphatic vasculature and efficiently restore lymphatic drainage and perfusion. Upon immunization, LOs support the activation of antigen-specific immune responses, thus acquiring properties of native lymphoid tissues. These findings provide a proof-of-concept strategy for the development of functional lympho-organoids suitable for restoring lymphatic and immune cell functions.


Subject(s)
Cells, Immobilized , Extracellular Matrix , Lymph Nodes , Organoids , Regeneration , Tissue Scaffolds/chemistry , Animals , Cells, Immobilized/metabolism , Cells, Immobilized/transplantation , Extracellular Matrix/chemistry , Extracellular Matrix/transplantation , Lymph Nodes/metabolism , Lymph Nodes/transplantation , Mice , Mice, Transgenic , Organoids/metabolism , Organoids/transplantation
6.
Nat Commun ; 9(1): 1787, 2018 05 03.
Article in English | MEDLINE | ID: mdl-29725010

ABSTRACT

In chronic lymphocytic leukemia (CLL), the non-hematopoietic stromal microenvironment plays a critical role in promoting tumor cell recruitment, activation, survival, and expansion. However, the nature of the stromal cells and molecular pathways involved remain largely unknown. Here, we demonstrate that leukemic B lymphocytes induce the activation of retinoid acid synthesis and signaling in the microenvironment. Inhibition of RA-signaling in stromal cells causes deregulation of genes associated with adhesion, tissue organization and chemokine secretion including the B-cell chemokine CXCL13. Notably, reducing retinoic acid precursors from the diet or inhibiting RA-signaling through retinoid-antagonist therapy prolong survival by preventing dissemination of leukemia cells into lymphoid tissues. Furthermore, mouse and human leukemia cells could be distinguished from normal B-cells by their increased expression of Rarγ2 and RXRα, respectively. These findings establish a role for retinoids in murine CLL pathogenesis, and provide new therapeutic strategies to target the microenvironment and to control disease progression.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Stromal Cells/pathology , Tretinoin/physiology , Animals , Cell Line , Chemokine CXCL13/metabolism , Coculture Techniques , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Male , Mice, Inbred C57BL , Signal Transduction , Survival Analysis , Tretinoin/metabolism , Tumor Microenvironment
7.
PLoS One ; 12(7): e0181043, 2017.
Article in English | MEDLINE | ID: mdl-28704462

ABSTRACT

BACKGROUND: Efforts are continuously made to detect and investigate the pivotal processes and interplay between the response of sentinel lymph node and malignant cells from a primary tumor. Conversely, some frequently used tumor animal models, such as human cancer xenografts, rarely feature metastasis. Therefore, lymph node alterations are seldom assessed. We consider that studying lymph node response could contribute to the understanding of host reaction to cancer. In the present study, we explored the presence of regional lymph node alterations in parallel with tumor growth using a pancreatic tumor xenograft model which does not develop metastasis. METHODS AND FINDINGS: We established an animal cancer model by the subcutaneous inoculation of PANC-1 (a metastatic human pancreatic cancer cell line) in the left upper flank of athymic nude mice. Tumor animals, along with controls (n = 7 / group) were subjected to Magnetic Resonance Imaging (MRI) in order to follow tumor growth and brachial and axillary lymph nodes alterations over several weeks. Further histological analyses were performed at the end of the study. The individual average of the different lymph nodes sizes was 15-40% larger in the tumor animals compared to control animals at week 8 to week 20. The tumor size and lymph node size were not correlated. Histological analysis of the lymph nodes showed paracortical histiocytosis. No metastasis to lymph nodes could be detected by histology. In tumor bearing animals, histiocytosis was associated with isolated apoptotic bodies and migration of human tumoral cells was confirmed by specific immunostaining of human origin markers. CONCLUSIONS: The lack of metastasis as well as the pathological manifestation of the lymph node alteration in this pre-clinical model established here parallels findings in patients with sinus histiocytosis that is correlated with improved survival.


Subject(s)
Histiocytosis, Sinus/diagnostic imaging , Lymph Nodes/diagnostic imaging , Magnetic Resonance Imaging/methods , Pancreatic Neoplasms/pathology , Animals , Cell Line, Tumor , Humans , Lymph Nodes/pathology , Mice , Mice, Nude , Neoplasm Transplantation
8.
Part Fibre Toxicol ; 13: 12, 2016 Feb 29.
Article in English | MEDLINE | ID: mdl-26926244

ABSTRACT

BACKGROUND: Silver nanoparticles (AgNPs) are an important class of nanomaterials used as antimicrobial agents for a wide range of medical and industrial applications. However toxicity of AgNPs and impact of their physicochemical characteristics in in vivo models still need to be comprehensively characterized. The aim of this study was to investigate the effect of size and coating on tissue distribution and toxicity of AgNPs after intravenous administration in mice, and compare the results with those obtained after silver acetate administration. METHODS: Male CD-1(ICR) mice were intravenously injected with AgNPs of different sizes (10 nm, 40 nm, 100 nm), citrate-or polyvinylpyrrolidone-coated, at a single dose of 10 mg/kg bw. An equivalent dose of silver ions was administered as silver acetate. Mice were euthanized 24 h after the treatment, and silver quantification by ICP-MS and histopathology were performed on spleen, liver, lungs, kidneys, brain, and blood. RESULTS: For all particle sizes, regardless of their coating, the highest silver concentrations were found in the spleen and liver, followed by lung, kidney, and brain. Silver concentrations were significantly higher in the spleen, lung, kidney, brain, and blood of mice treated with 10 nm AgNPs than those treated with larger particles. Relevant toxic effects (midzonal hepatocellular necrosis, gall bladder hemorrhage) were found in mice treated with 10 nm AgNPs, while in mice treated with 40 nm and 100 nm AgNPs lesions were milder or negligible, respectively. In mice treated with silver acetate, silver concentrations were significantly lower in the spleen and lung, and higher in the kidney than in mice treated with 10 nm AgNPs, and a different target organ of toxicity was identified (kidney). CONCLUSIONS: Administration of the smallest (10 nm) nanoparticles resulted in enhanced silver tissue distribution and overt hepatobiliary toxicity compared to larger ones (40 and 100 nm), while coating had no relevant impact. Distinct patterns of tissue distribution and toxicity were observed after silver acetate administration. It is concluded that if AgNPs become systemically available, they behave differently from ionic silver, exerting distinct and size-dependent effects, strictly related to the nanoparticulate form.


Subject(s)
Nanoparticles , Silver/pharmacokinetics , Silver/toxicity , Acetates/administration & dosage , Acetates/pharmacokinetics , Acetates/toxicity , Animals , Brain/metabolism , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Citric Acid/chemistry , Gallbladder Diseases/chemically induced , Gallbladder Diseases/pathology , Hemorrhage/chemically induced , Hemorrhage/pathology , Injections, Intravenous , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Lung/metabolism , Male , Mice, Inbred ICR , Necrosis , Particle Size , Povidone/chemistry , Risk Assessment , Silver/administration & dosage , Silver/blood , Silver/chemistry , Silver Compounds/administration & dosage , Silver Compounds/pharmacokinetics , Silver Compounds/toxicity , Spleen/metabolism , Tissue Distribution
9.
J Control Release ; 194: 130-7, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25173842

ABSTRACT

Iron oxide-containing magnetic nanoparticles (MNPs) have certain advantages over currently used contrast agents for tumor imaging by magnetic resonance imaging (MRI) as they offer the possibility of functionalization with ligands and tracers. Functionalized MNPs also may be used for targeted tumor therapy. In the current study nanoparticles (NPs) consisting of recombinant human serum albumin (rHSA) with incorporated hydrophilic (NH4)2Ce(IV)(NO3)6-γ-Fe2O3 particles (CAN maghemite particles) for medical imaging were produced and characterized. For this purpose CAN maghemite particles were incorporated into an rHSA matrix to yield rHSA-NPs. The resulting NPs were analyzed by transmission electron microscopy, photon correlation spectroscopy, and atomic absorption. The sizes of the manufactured NP were 170 ± 10 nm, and the zeta-potential was -50 ± 3 mV. The NPs remained stable when stored after lyophilization with sucrose 3% [w/v] as a cryoprotector. They showed pro-inflammatory properties without cell and animal toxicity in vivo and were highly contrasting in MRI. In conclusion, this report introduces novel rHSA NP with favorable properties containing iron oxide for detection by MRI.


Subject(s)
Contrast Media , Diagnostic Imaging/methods , Ferric Compounds , Magnetite Nanoparticles , Serum Albumin , Animals , Cell Line, Tumor , Cell Survival/drug effects , Contrast Media/administration & dosage , Contrast Media/toxicity , Drug Stability , Electrochemistry , Ferric Compounds/administration & dosage , Ferric Compounds/chemistry , Ferric Compounds/toxicity , Humans , Magnetic Resonance Imaging , Magnetics , Magnetite Nanoparticles/administration & dosage , Magnetite Nanoparticles/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Neoplasms/diagnosis , Particle Size , Recombinant Proteins/administration & dosage , Recombinant Proteins/toxicity , Serum Albumin/administration & dosage , Serum Albumin/toxicity
10.
Mol Neurobiol ; 33(3): 199-213, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16954596

ABSTRACT

The focus of our study was to determine the role of G protein-coupled receptor kinases (GRKs) and beta-arrestins in agonist-induced CB1 receptor modulation during cannabinoid tolerance and their dependence from the extracellular signal-regulated kinase (ERK) cascade. In wild-type mice, chronic Delta9-tetrahydrocannabinol (THC) exposure significantly activated specific GRK and beta- arrestin subunits in all the considered brain areas (striatum, cerebellum, hippocampus, and prefrontal cortex), suggesting their involvement in the adaptive processes underlying CB1 receptor downregulation and desensitization. These events were ERK-dependent in the striatum and cerebellum, because they were prevented in the genetic (Ras-GRF1 knockout mice) and pharmacological (SL327-pretreated mice) models of ERK activation inhibition, whereas in the hippocampus and prefrontal cortex, they appeared to be mostly ERK-independent. In the latter areas, ERK activation after chronic THC increased the transcription factors cyclic adenosine monophosphate response element-binding protein and Fos B as well as a downstream protein known as brainderived neurotrophic factor. As a whole, our data suggest that in the striatum and cerebellum, THC-induced ERK activation could represent a key signaling event to initiate homologous desensitization of CB1 receptor, accounting for the development of tolerance to THC-induced hypolocomotion. In the prefrontal cortex and hippocampus, THC-induced alteration in GRKs and beta-arrestins primarily depends on other kinases, whereas ERK activation could be part of the molecular adaptations that underlie the complex behavioral phenotype that defines the addicted state.


Subject(s)
Arrestins/metabolism , Brain/metabolism , Dronabinol/metabolism , Drug Tolerance , Extracellular Signal-Regulated MAP Kinases/metabolism , Protein Serine-Threonine Kinases/metabolism , ras Proteins/metabolism , Animals , Brain/anatomy & histology , Brain/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Dronabinol/pharmacology , G-Protein-Coupled Receptor Kinase 1/metabolism , Mice , Mice, Knockout , Proto-Oncogene Proteins c-fos/metabolism , Receptor, Cannabinoid, CB1/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism , beta-Arrestins , ras-GRF1/genetics , ras-GRF1/metabolism
11.
Psychopharmacology (Berl) ; 182(4): 527-36, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16079992

ABSTRACT

The aim of this work was to study the mechanism of cross-modulation between cannabinoid and opioid systems for analgesia during acute and chronic exposure. Acute coadministration of ineffectual subanalgesic doses of the synthetic cannabinoid CP-55,940 (0.2 mg/kg i.p.) and morphine (2.5 mg/kg i.p.) resulted in significant antinociception. In chronic studies, a low dose of CP-55,940 (0.2 mg/kg, i.p.) that per se did not induce analgesia in naive animals produced a significant degree of antinociception in rats made tolerant to morphine, whereas in rats made tolerant to CP-55,940, morphine challenge did not produce any analgesic response. To identify the mechanism of these asymmetric interactions during chronic treatment, we investigated the functional activity of cannabinoid and mu opioid receptors and their effects on the cyclic AMP (cAMP) cascade. Autoradiographic-binding studies indicated a slight but significant reduction in cannabinoid receptor levels in the hippocampus and cerebellum of morphine-tolerant rats, whereas CP-55,940-stimulated [35S]GTPgammaS binding showed a significant decrease in receptor/G protein coupling in the limbic area. In CP-55,940 exposed rats, mu opioid receptor binding was significantly raised in the lateral thalamus and periaqueductal gray (PAG), with an increase in DAMGO-stimulated [35S]GTPgammaS binding in the nucleus accumbens. Finally, we tested the cAMP system's responsiveness to the cannabinoid and opioid in the striatum and dorsal mesencephalon. In vivo chronic morphine did not affect CP-55,940's ability to inhibit forskolin-stimulated cAMP production in vitro and actually induced sensitization in striatal membranes. In contrast, in vivo chronic CP-55,940 desensitized DAMGO's efficacy in inhibiting forskolin-stimulated cAMP production in vitro. The alterations to the cAMP system seem to mirror the behavioral responses, indicating that the two systems may interact at the postreceptor level. This might open up new therapeutic opportunities for relief of chronic pain through cannabinoid-opioid coadministration.


Subject(s)
Behavior, Animal/drug effects , Brain Chemistry/drug effects , Cannabinoids/pharmacology , Narcotics/pharmacology , Receptors, Cannabinoid/physiology , Receptors, Opioid/physiology , Animals , Area Under Curve , Brain/anatomy & histology , Brain/drug effects , Cyclic AMP/metabolism , Cyclohexanols/pharmacokinetics , Cyclohexanols/pharmacology , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Interactions , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacokinetics , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacokinetics , Male , Pain Measurement/drug effects , Radioligand Assay/methods , Rats , Rats, Sprague-Dawley , Sulfur Isotopes/pharmacokinetics , Tritium/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...