Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Open Res Eur ; 1: 102, 2021.
Article in English | MEDLINE | ID: mdl-37645131

ABSTRACT

Background: Optical microtraps at the focus of high numerical aperture (high-NA) imaging systems enable efficient collection, trapping, detection and manipulation of individual neutral atoms for quantum technology and studies of optical physics associated with super- and sub-radiant states.  The recently developed "Maltese cross" geometry (MCG) atom trap uses four in-vacuum lenses to achieve four-directional high-NA optical coupling to single trapped atoms and small atomic arrays. This article presents the first extensive characterisation of atomic behaviour in a MCG atom trap. Methods: We employ a MCG system optimised for high coupling efficiency and characterise the resulting properties of the trap and trapped atoms.  Using current best practices, we measure occupancy, loading rate, lifetime, temperature, fluorescence anti-bunching and trap frequencies. We also use the four-directional access to implement a new method to map the spatial distribution of collection efficiency from high-NA optics:  we use the two on-trap-axis lenses to produce a 1D optical lattice, the sites of which are stochastically filled and emptied by the trap loading process. The two off-trap-axis lenses are used for imaging and single-mode collection.  Correlations of single-mode and imaging fluorescence signals are then used to map the single-mode collection efficiency. Results: We observe trap characteristics comparable to what has been reported for single-atom traps with one- or two-lens optical systems. The collection efficiency distribution in the axial and transverse directions is directly observed to be in agreement with expected collection efficiency distribution from Gaussian beam optics. Conclusions: The multi-directional high-NA access provided by the Maltese cross geometry enables complex manipulations and measurements not possible in geometries  with fewer  directions of  access,  and can  be  achieved  while  preserving other trap characteristics such as lifetime, temperature, and trap size.

2.
Opt Express ; 27(26): 38463-38478, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878613

ABSTRACT

We describe a cavity-enhanced spontaneous parametric down-conversion (CE-SPDC) source for narrowband photon pairs with filters designed such that 97.7% of the correlated photons are in a single mode of 4.3(4) MHz bandwidth. Type-II phase matching, a tuneable-birefringence resonator, MHz-resolution pump tuning, and tuneable Fabry-Perot filters are used to achieve independent signal and idler tuning. We map the CE-SPDC spectrum using difference frequency generation to precisely locate the emission clusters, demonstrate CE-SPDC driven atomic spectroscopy, and measure a contribution from unwanted modes of 7.7%. The generated photon pairs efficiently interact with neutral rubidium, a well-developed system for quantum networking and quantum simulation. The techniques are readily extensible to other material systems.

3.
Opt Express ; 27(21): 31042-31052, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684344

ABSTRACT

We report on the simultaneous observation from four directions of the fluorescence of single 87Rb atoms trapped at the common focus of four high numerical aperture (NA=0.5) aspheric lenses. We use an interferometrically-guided pick-and-place technique to precisely and stably position the lenses along the four cardinal directions with their foci at a single central point. The geometry gives right angle access to a single quantum emitter, and will enable new trapping, excitation, and collection methods. The fluorescence signals indicate both sub-Poissonian atom number statistics and photon anti-bunching, showing suitability for cold atom quantum optics.

4.
Nature ; 543(7646): 525-528, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28332519

ABSTRACT

Measurement of spin precession is central to extreme sensing in physics, geophysics, chemistry, nanotechnology and neuroscience, and underlies magnetic resonance spectroscopy. Because there is no spin-angle operator, any measurement of spin precession is necessarily indirect, for example, it may be inferred from spin projectors at different times. Such projectors do not commute, and so quantum measurement back-action-the random change in a quantum state due to measurement-necessarily enters the spin measurement record, introducing errors and limiting sensitivity. Here we show that this disturbance in the spin projector can be reduced below N1/2-the classical limit for N spins-by directing the quantum measurement back-action almost entirely into an unmeasured spin component. This generates a planar squeezed state that, because spins obey non-Heisenberg uncertainty relations, enables simultaneous precise knowledge of spin angle and spin amplitude. We use high-dynamic-range optical quantum non-demolition measurements applied to a precessing magnetic spin ensemble to demonstrate spin tracking with steady-state angular sensitivity 2.9 decibels below the standard quantum limit, simultaneously with amplitude sensitivity 7.0 decibels below the Poissonian variance. The standard quantum limit and Poissonian variance indicate the best possible sensitivity with independent particles. Our method surpasses these limits in non-commuting observables, enabling orders-of-magnitude improvements in sensitivity for state-of-the-art sensing and spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...