Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(5): e0250672, 2021.
Article in English | MEDLINE | ID: mdl-33945551

ABSTRACT

In this work a shared pressure-controlled ventilation device for two patients is considered. By the use of different valves incorporated to the circuit, the device enables the restriction of possible cross contamination and the individualization of tidal volumes, driving pressures, and positive end expiratory pressure PEEP. Possible interactions in the expiratory dynamics of different pairs of patients are evaluated in terms of the characteristic exhalatory times. These characteristic times can not be easily established using simple linear lumped element models. For this purpose, a 1D model using the Hydraulic and Mechanical libraries in Matlab Simulink was developed. In this sense, experiments accompany this study to validate the model and characterize the different valves of the circuit. Our results show that connecting two patients in parallel to a ventilator always resulted in delays of time during the exhalation. The size of this effect depends on different parameters associated with the patients, the circuit and the ventilator. The dynamics of the exhalation of both patients is determined by the ratios between patients exhalatory resistances, compliances, driving pressures and PEEPs. Adverse effects on exhalations became less noticeable when respiratory parameters of both patients were similar, flow resistances of valves added to the circuit were negligible, and when the ventilator exhalatory valve resistance was also negligible. The asymmetries of driving pressures, compliances or resistances exacerbated the possibility of auto-PEEP and the increase in relaxation times became greater in one patient than in the other. In contrast, exhalatory dynamics were less sensitive to the ratio of PEEP imposed to the patients.


Subject(s)
Exhalation , Respiration, Artificial/instrumentation , Ventilators, Mechanical , Humans
2.
Appl Opt ; 58(6): 1587-1595, 2019 Feb 20.
Article in English | MEDLINE | ID: mdl-30874049

ABSTRACT

We assess and discuss several technical aspects of the multifractal statistical analysis applied to time series of dynamic speckle intensity signals. Due to the complexity of this goal, we implemented an optical setup that mimics the light scattering effect from the illuminated object using a spatial light modulator. The multifractal spectrum of the obtained dynamic speckle intensity signals is quantified by utilizing a mathematical framework based on the decomposition of wavelet leaders' functions. The propagated light that is scattered utilizing the spatial light modulator verifies the well-known first- and second-order statistics of the obtained speckle images and also a given temporal correlation function determined by a copula algorithm adding several classes of fractional Gaussian noises. To experimentally implement these issues, we load appropriate dynamic temporal phase screens in the spatial light modulator working on phase-only mode and guide the light propagation through an optical setup composed of a 4f correlator. Different types of statistical trends in the scaling properties as a function of frequency sampling, intensity signal discretization, mean size of speckle, temporal correlation length, and vanishing moments of the elected mother wavelet analysis are theoretically and experimentally tested and compared.

3.
Appl Opt ; 56(3): 365-374, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-28157888

ABSTRACT

In digital speckle pattern interferometry, fringeless speckle pattern interferograms are obtained when the object field deformation is insufficient to produce local phase variations higher than 2π. Therefore, the use of the well-known phase recovery algorithms based on fringe processing is not adequate. In this work, distinct algorithms based on the application of a straightforward arccosine function to a filtered interferogram and the correlation of intensity images and implicit smoothing splines are proposed, analyzed, and compared for the fast inspection of nanometric displacement fields, avoiding the acquisition of several images. In addition, three different methods for the normalization of fringeless speckle pattern interferograms are proposed. The Structural Similarity Index is used to assess the performance of the tested methods by means of numerical simulations under different illuminations, signal-to-noise ratios, phase excursions, and mean speckle size conditions. The analysis shows that the phase recovered by the methods based on the arccosine function and correlation are appropriate for a fast inspection solution. The implicit smoothing spline outperforms other methods in almost all conditions.

4.
Appl Opt ; 54(25): 7663-72, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26368890

ABSTRACT

Three real-time methods for object-phase recovery are implemented and compared in temporal speckle-pattern interferometry. Empirical mode and intrinsic time-scale decompositions are used and compared as real-time nonstationary and nonlinear filtering techniques for the extraction of the spatio-temporal evolution of the object phase. The proposed real-time methods avoid the application of the Hilbert transform and improve the accuracy of the measurement by filtering under-modulated pixels using Delaunay triangulation. The performance of the proposed methods is evaluated by comparing phase-recovery accuracy and computation time by means of numerical simulations and experimental data obtained from common and simultaneous π/2 phase-shifting heterodyne interferometry.

5.
Appl Opt ; 54(8): 2132-40, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25968394

ABSTRACT

This paper presents a method for amplitude and phase retrieval in simultaneous π/2 phase-shifting heterodyne interferometry. The used optical setup admits the introduction of a temporal carrier and simultaneously verifies the two-beam interferometry equation for each intensity signal, which are π/2 rad out of phase (quadrature). The spatiotemporal recovering process is obtained by isolating the object amplitude and phase using wavelet transform analysis of the temporal series composed by the difference between the measured pixel intensities corresponding to each quadrature signal. This process is subsequently improved by introducing a framework based on the synchrosqueezing transform, which recovers the data of interest with higher accuracy when very low scattering amplitudes and phase excursions must be determined in noisy working conditions. The advantages and limitations of the presented method are analyzed and discussed using numerical simulations and also experimental data obtained from temporal speckle pattern interferometry.

6.
Appl Opt ; 53(30): 7120-8, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25402802

ABSTRACT

A simplified method for object phase recovering is implemented in temporal speckle pattern interferometry when the employed interferometer admits the introduction of a temporal carrier, and the well-known two-beam interferometry equation is verified. The spatiotemporal evolution of the object phase is isolated by modulating the acquired interferometric intensity signals with a known temporal carrier in order to carry out its analysis by using a bivariate empirical mode decomposition framework that avoids the application of the Hilbert transform, which is not suitable for intensity signals with abrupt fluctuations. The advantages and limitations of this technique are analyzed and discussed by comparing computation time and phase recovery capability with well-known phase-retrieval methods by means of numerical simulations and experimental data.

SELECTION OF CITATIONS
SEARCH DETAIL
...