Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35270689

ABSTRACT

Ecosystems provide many services that are essential for human activities and for our well-being. Many regulation services are interconnected and are fundamental in mitigating and hindering the negative effects of several phenomena such as pollution. Pollution, in particular airborne particulate matter (PM), represents an important risk to human health. This perspective aims at providing a current framework that relates ecosystem services, regulating services, pollination, and human health, with particular regards to pollution and its impacts. A quantitative literature analysis on the topic has been adopted. The health repercussions of problems related to ecosystem services, with a focus on the effects of atmospheric particulate matter, have been highlighted in the work throughout a case study. In polluted environments, pollinators are severely exposed to airborne PM, which adheres to the insect body hairs and can be ingested through contaminated food resources, i.e., pollen and honey. This poses a serious risk for the health of pollinators with consequences on the pollination service and, ultimately, for human health.


Subject(s)
Air Pollution , Ecosystem , Air Pollution/adverse effects , Environmental Pollution , Humans , Particulate Matter/analysis , Pollination/physiology
2.
Biology (Basel) ; 11(2)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35205099

ABSTRACT

The concept of ecosystem services is widely understood as the services and benefits thatecosystems provide to humans, and they have been categorised into provisioning, regulating, supporting, and cultural services. This article aims to provide an updated overview of the benefits that the honey bee Apis mellifera provides to humans as well as ecosystems. We revised the role of honey bees as pollinators in natural ecosystems to preserve and restore the local biodiversity of wild plants; in agro-ecosystems, this species is widely used to enhance crop yield and quality, meeting the increasing food demand. Beekeeping activity provides humans not only with high-quality food but also with substances used as raw materials and in pharmaceuticals, and in polluted areas, bees convey valuable information on the environmental presence of pollutants and their impact on human and ecosystem health. Finally, the role of the honey bee in symbolic tradition, mysticism, and the cultural values of the bee habitats are also presented. Overall, we suggest that the symbolic value of the honey bee is the most important role played by this insect species, as it may help revitalise and strengthen the intimate and reciprocal relationship between humans and the natural world, avoiding the inaccuracy of considering the ecosystems as mere providers of services to humans.

3.
Sci Total Environ ; 754: 142039, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32919316

ABSTRACT

Deadwood decomposition is a complex and dynamic process with large implications for biogeochemical cycling of carbon (C) and nitrogen (N) in forest soil and litter. Moreover, it affects functional and structural diversity of fungal and bacterial communities in these components. Mesocosms with deadwood blocks at progressive decay classes were set in a black pine forest and incubated for 28 months in the field with the aim to assess the impact of deadwood decomposition on i) CO2, CH4 and N2O fluxes; ii) C and N pools and allocation among deadwood, litter and soil; iii) the fungal and bacterial structural diversity and activity. CO2, CH4 and N2O fluxes from deadwood were monitored throughout the field incubation; deadwood biomass loss and decay rate for each decay class were calculated. The stock of C and N, enzyme activities, fungal and bacterial communities in deadwood, litter fractions (fresh, fragmented and humified) and soil at two depths were measured. Emissions of CO2 and CH4 increased over the deadwood decomposition advancement and the decay reached the maximum rates in the last decomposition classes. N2O fluxes were low and showed either production (prevalent in the first year) or consumption. Independent of the decay class, 20% of C stored in deadwood was lost as CO2 in the atmosphere, whereas 32% was transferred to the fragmented and humified litter fractions in the last decay class. A corresponding increase of cellulose and hemicellulose degrading enzymes was found in deadwood, also favored by substrates accessibility through fragmentation and successional changes in fungal and bacterial communities. Deadwood, litter fractions and soil components were clearly distinguished in terms of chemical and microbiological properties and activities. Fragmented and humified litter fractions were the only components responsive to the advanced stage of deadwood decomposition, being directly affected by the physical redistribution of fragmented organic matter.


Subject(s)
Pinus , Soil , Biomass , Ecosystem , Forests , Soil Microbiology
4.
Sci Total Environ ; 656: 659-669, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30529969

ABSTRACT

Soil plays a fundamental role in many ecological processes, throughout a complex network of above- and below-ground interactions. This has aroused increasing interest in the use of correlates for biodiversity assessment and has demonstrated their reliability with respect to proxies based on environmental data alone. Although co-variation of species richness and composition in forests has been discussed in the literature, only a few studies have explored these elements in forest plantations, which are generally thought to be poor in biodiversity, being aimed at timber production. Based on this premise our aims were 1) to test if cross-taxon congruence across different groups of organisms (bacteria, vascular plants, mushrooms, ectomycorrhizae, mycelium, carabids, microarthropods, nematodes) is consistent in artificial stands; 2) to evaluate the strength of relationships due to the existing environmental gradients as expressed by abiotic and biotic factors (soil, spatial-topographic, dendrometric variables). Correlations between groups were studied with Mantel and partial Mantel tests, while variance partition analysis was applied to assess the relative effect of environmental variables on the robustness of observed relationships. Significant cross-taxon congruence was observed across almost all taxonomic groups pairs. However, only bacteria/mycelium and mushrooms/mycelium correlations remained significant after removing the environmental effect, suggesting that a strong abiotic influence drives species composition. Considering variation partitioning, the results highlighted the importance of bacteria as a potential indicator: bacteria were the taxonomic group with the highest compositional variance explained by the predictors used; furthermore, they proved to be involved in the only cases where the variance attributed solely to the pure effect of biotic or abiotic predictors was significant. Remarkably, the co-dependent effect of all predictors always explained the highest portion of total variation in all dependent taxa, testifying the intricate and dynamic interplay of environmental factors and biotic interactions in explaining cross-taxon congruence in forest plantations.


Subject(s)
Biodiversity , Environment , Forests , Pinus , Animals , Bacteria , Embryophyta , Forestry , Fungi , Invertebrates , Italy , Microbiota , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...