Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
J Agric Food Chem ; 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39033510

ABSTRACT

Utilization of in vitro (cellular) techniques, like Cell Painting and transcriptomics, could provide powerful tools for agrochemical candidate sorting and selection in the discovery process. However, using these models generates challenges translating in vitro concentrations to the corresponding in vivo exposures. Physiologically based pharmacokinetic (PBPK) modeling provides a framework for quantitative in vitro to in vivo extrapolation (IVIVE). We tested whether in vivo (rat liver) transcriptomic and apical points of departure (PODs) could be accurately predicted from in vitro (rat hepatocyte or human HepaRG) transcriptomic PODs or HepaRG Cell Painting PODs using PBPK modeling. We compared two PBPK models, the ADMET predictor and the httk R package, and found httk to predict the in vivo PODs more accurately. Our findings suggest that a rat liver apical and transcriptomic POD can be estimated utilizing a combination of in vitro transcriptome-based PODs coupled with PBPK modeling for IVIVE. Thus, high content in vitro data can be translated with modest accuracy to in vivo models of ultimate regulatory importance to help select agrochemical analogs in early stage discovery program.

2.
Elife ; 132024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666763

ABSTRACT

A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.


Subject(s)
Membrane Proteins , Animals , Male , Mice , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/chemistry , Spermatozoa/physiology , Spermatozoa/metabolism , Immunoglobulins/genetics , Immunoglobulins/metabolism , Immunoglobulins/chemistry , Sperm-Ovum Interactions/physiology , Female
3.
J Agric Food Chem ; 72(19): 10710-10724, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38688008

ABSTRACT

The human population will be approximately 9.7 billion by 2050, and food security has been identified as one of the key issues facing the global population. Agrochemicals are an important tool available to farmers that enable high crop yields and continued access to healthy foods, but the average new agrochemical active ingredient takes more than ten years, 350 million dollars, and 20,000 animals to develop and register. The time, monetary, and animal costs incentivize the use of New Approach Methodologies (NAMs) in early-stage screening to prioritize chemical candidates. This review outlines NAMs that are currently available or can be adapted for use in early-stage screening agrochemical programs. It covers new in vitro screens that are on the horizon in key areas of regulatory concern. Overall, early-stage screening with NAMs enables the prioritization of development for agrochemicals without human and environmental health concerns through a more directed, agile, and iterative development program before animal-based regulatory testing is even considered.


Subject(s)
Agrochemicals , Humans , Animals
4.
Sci Adv ; 10(8): eadk6352, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38381819

ABSTRACT

Fertilization involves the recognition and fusion of sperm and egg to form a previously unidentified organism. In mammals, surface molecules on the sperm and egg have central roles, and while adhesion is mediated by the IZUMO1-JUNO sperm-egg ligand-receptor pair, the molecule/s responsible for membrane fusion remain mysterious. Recently, MAIA/FCRL3 was identified as a mammalian egg receptor, which bound IZUMO1 and JUNO and might therefore have a bridging role in gamete recognition and fusion. Here, we use sensitive assays designed to detect extracellular protein binding to investigate the interactions between MAIA and both IZUMO1 and JUNO. Despite using reagents with demonstrable biochemical activity, we did not identify any direct binding between MAIA/FCRL3 and either IZUMO1 or JUNO. We also observed no fusogenic activity of MAIA/FCRL3 in a cell-based membrane fusion assay. Our findings encourage caution in further investigations on the role played by MAIA/FCRL3 in fertilization.


Subject(s)
Membrane Proteins , Receptors, Fc , Animals , Humans , Male , Immunoglobulins/genetics , Immunoglobulins/analysis , Immunoglobulins/chemistry , Ligands , Mammals/metabolism , Membrane Proteins/genetics , Membrane Proteins/chemistry , Semen/metabolism , Sperm-Ovum Interactions , Spermatozoa/metabolism
5.
J Cell Biol ; 222(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36656648

ABSTRACT

The molecular mechanism of sperm-egg fusion is a long-standing mystery in reproduction. Brukman and colleagues (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202207147) now provide evidence that the sperm surface protein IZUMO1, which is essential for mammalian fertilization, can induce membrane fusion in cultured cells.


Subject(s)
Membrane Fusion , Membrane Proteins , Sperm-Ovum Interactions , Animals , Male , Fertilization/genetics , Immunoglobulins/genetics , Immunoglobulins/metabolism , Mammals , Membrane Proteins/genetics , Membrane Proteins/metabolism , Semen/metabolism , Sperm-Ovum Interactions/genetics , Spermatozoa/metabolism , Cells, Cultured
7.
Birth Defects Res ; 114(17): 1123-1137, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36205106

ABSTRACT

BACKGROUND: The dynamics and complexities of in utero fetal development create significant challenges in transitioning from lab animal-centric developmental toxicity testing methods to assessment strategies based on new approach methodologies (NAMs). Nevertheless, considerable progress is being made, stimulated by increased research investments and scientific advances, such as induced pluripotent stem cell-derived models. To help identify developmental toxicity NAMs for toxicity screening and potential funding through the American Chemistry Council's Long-Range Research Initiative, a systematic literature review was conducted to better understand the current landscape of developmental toxicity NAMs. METHODS: Scoping review tools were used to systematically survey the literature (2010-2021; ~18,000 references identified), results and metadata were then extracted, and a user-friendly interactive dashboard was created. RESULTS: The data visualization dashboard, developed using Tableau® software, is provided as a free, open-access web tool. This dashboard enables straightforward interactive queries and visualizations to identify trends and to distinguish and understand areas or NAMs where research has been most, or least focused. CONCLUSIONS: Herein, we describe the approach and methods used, summarize the benefits and challenges of applying the systematic-review techniques, and highlight the types of questions and answers for which the dashboard can be used to explore the many different facets of developmental toxicity NAMs.


Subject(s)
Software , Toxicity Tests , Animals , United States
9.
Arch Toxicol ; 96(12): 3407-3419, 2022 12.
Article in English | MEDLINE | ID: mdl-36063173

ABSTRACT

With an increasing need to incorporate new approach methodologies (NAMs) in chemical risk assessment and the concomitant need to phase out animal testing, the interpretation of in vitro assay readouts for quantitative hazard characterisation becomes more important. Physiologically based kinetic (PBK) models, which simulate the fate of chemicals in tissues of the body, play an essential role in extrapolating in vitro effect concentrations to in vivo bioequivalent exposures. As PBK-based testing approaches evolve, it will become essential to standardise PBK modelling approaches towards a consensus approach that can be used in quantitative in vitro-to-in vivo extrapolation (QIVIVE) studies for regulatory chemical risk assessment based on in vitro assays. Based on results of an ECETOC expert workshop, steps are recommended that can improve regulatory adoption: (1) define context and implementation, taking into consideration model complexity for building fit-for-purpose PBK models, (2) harmonise physiological input parameters and their distribution and define criteria for quality chemical-specific parameters, especially in the absence of in vivo data, (3) apply Good Modelling Practices (GMP) to achieve transparency and design a stepwise approach for PBK model development for risk assessors, (4) evaluate model predictions using alternatives to in vivo PK data including read-across approaches, (5) use case studies to facilitate discussions between modellers and regulators of chemical risk assessment. Proof-of-concepts of generic PBK modelling approaches are published in the scientific literature at an increasing rate. Working on the previously proposed steps is, therefore, needed to gain confidence in PBK modelling approaches for regulatory use.


Subject(s)
Models, Biological , Animals , Kinetics , Risk Assessment/methods
10.
Front Cell Dev Biol ; 10: 824629, 2022.
Article in English | MEDLINE | ID: mdl-35478965

ABSTRACT

Combined hormone drugs are the basis for orally administered contraception. However, they are associated with severe side effects that are even more impactful for women in developing countries, where resources are limited. The risk of side effects may be reduced by non-hormonal small molecules which specifically target proteins involved in fertilization. In this study, we present a virtual docking experiment directed to discover molecules that target the crucial fertilization interactions of JUNO (oocyte) and IZUMO1 (sperm). We docked 913,000 molecules to two crystal structures of JUNO and ranked them on the basis of energy-related criteria. Of the 32 tested candidates, two molecules (i.e., Z786028994 and Z1290281203) demonstrated fertilization inhibitory effect in both an in vitro fertilization (IVF) assay in mice and an in vitro penetration of human sperm into hamster oocytes. Despite this clear effect on fertilization, these two molecules did not show JUNO-IZUMO1 interaction blocking activity as assessed by AVidity-based EXtracellular Interaction Screening (AVEXIS). Therefore, further research is required to determine the mechanism of action of these two fertilization inhibitors.

12.
Reprod Toxicol ; 104: 44-51, 2021 09.
Article in English | MEDLINE | ID: mdl-34174366

ABSTRACT

Assessing male reproductive toxicity of environmental and therapeutic agents relies on the histopathology of the testis and epididymis in a pre-clinical setting. Animal histopathology poorly correlates with human sperm parameters, and none of these current methods are strong indicators of sperm health or reproductive potential. Therefore, there is an urgent need to identify a translatable, non-invasive and reliable approach to monitor environmental and therapeutic agents' effects on male reproductive health. mRNA sequences were analyzed in mouse, rat and human sperm samples to identify sperm transcriptomic similarities across species that could be used as biomarkers to predict male reproductive toxicity in animal models. Semen specimens were collected from men aged 18 to 55 years with proven fertility. Rat and mouse semen specimens were collected via needle punctures of the cauda epididymides. Sperm RNAs were extracted using an optimized sperm RNA isolation protocol and subjected to polyA-purified mRNA-sequencing. Bioinformatics analyses, including differential abundance and gene set enrichment analysis, were used to investigate the biological and molecular functions of all shared and differentially abundant transcripts across species. Transcriptome profiling identified 6,684 similarly expressed transcripts within the three species of which 1,579 transcripts were found to be involved in spermatogenic functions. Our findings have shown that sperm transcriptome is highly species dependent, however, there are some key similarities among transcripts that are required for fertility. Based on these similarities, sperm mRNA biomarker may be developed to monitor male reproductive toxicity where rodent models would make suitable laboratory substitutes for human.


Subject(s)
Spermatozoa/physiology , Animals , Epididymis , Fertility , Gene Expression Profiling , Humans , Male , Mice , RNA , RNA, Messenger , Rats , Semen Analysis , Spermatogenesis , Spermatozoa/drug effects , Testis/drug effects , Transcriptome
13.
Nat Commun ; 12(1): 1251, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33623007

ABSTRACT

Dysfunction of embryo transport causes ectopic pregnancy which affects approximately 2% of conceptions in the US and Europe, and is the most common cause of pregnancy-related death in the first trimester. Embryo transit involves a valve-like tubal-locking phenomenon that temporarily arrests oocytes at the ampullary-isthmic junction (AIJ) where fertilisation occurs, but the mechanisms involved are unknown. Here we show that female mice lacking the orphan adhesion G-protein coupled receptor Adgrd1 are sterile because they do not relieve the AIJ restraining mechanism, inappropriately retaining embryos within the oviduct. Adgrd1 is expressed on the oviductal epithelium and the post-ovulatory attenuation of tubal fluid flow is dysregulated in Adgrd1-deficient mice. Using a large-scale extracellular protein interaction screen, we identified Plxdc2 as an activating ligand for Adgrd1 displayed on cumulus cells. Our findings demonstrate that regulating oviductal fluid flow by Adgrd1 controls embryo transit and we present a model where embryo arrest at the AIJ is due to the balance of abovarial ciliary action and the force of adovarial tubal fluid flow, and in wild-type oviducts, fluid flow is gradually attenuated through Adgrd1 activation to enable embryo release. Our findings provide important insights into the molecular mechanisms involved in embryo transport in mice.


Subject(s)
Body Fluids/physiology , Embryo, Mammalian/metabolism , Oviducts/metabolism , Receptors, G-Protein-Coupled/metabolism , Rheology , Animals , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Cilia/metabolism , Cilia/ultrastructure , Cumulus Cells/metabolism , Epithelium/metabolism , Female , Genotype , Infertility, Female/metabolism , Infertility, Female/pathology , Ligands , Male , Mice , Models, Biological , Muscles/metabolism , Mutation/genetics , Oviducts/pathology , Oviducts/ultrastructure , Promoter Regions, Genetic/genetics , Protein Binding , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/deficiency
14.
Food Chem Toxicol ; 147: 111869, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33217531

ABSTRACT

Considerations of human relevance and animal use are driving research to identify new approaches to inform risk assessment of chemicals and replace guideline-based rodent carcinogenicity tests. Here, the hypothesis was tested across four agrochemicals that 1) a rat 90-day transcriptome-based BEPOD is protective of a rat carcinogenicity study and 2) a subchronic liver or kidney BEPOD would approximate a cancer bioassay apical POD derived from other organs and a rat subchronic BEPOD would approximate a mouse cancer bioassay apical POD. Using RNA sequencing and BMDExpress software, liver and/or kidney BEPOD values were generated in male rats exposed for 90 days to either Triclopyr Acid, Pronamide, Sulfoxaflor, or Fenpicoxamid. BEPOD values were compared to benchmark dose-derived apical POD values generated from rat 90-day and rodent carcinogenicity studies. Across all four agrochemicals, findings showed that a rat 90-day study BEPOD approximated the most sensitive apical POD (within 10-fold) generated from the 90-day rat study and long-term rodent carcinogenicity studies. This study supports the conclusion that a subchronic transcriptome-based BEPOD could be utilized to estimate an apical POD within a risk-based approach of chronic toxicity and carcinogenicity agrochemical assessment, abrogating the need for time- and resource-intensive rodent carcinogenicity studies and minimizing animal testing.


Subject(s)
Agrochemicals/toxicity , Chemical and Drug Induced Liver Injury/pathology , Kidney Diseases/chemically induced , Transcription, Genetic/drug effects , Animals , Carcinogenicity Tests , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Rats , Toxicogenetics
15.
PLoS Biol ; 18(11): e3000953, 2020 11.
Article in English | MEDLINE | ID: mdl-33186358

ABSTRACT

Sexual reproduction is such a successful way of creating progeny with subtle genetic variations that the vast majority of eukaryotic species use it. In mammals, it involves the formation of highly specialised cells: the sperm in males and the egg in females, each carrying the genetic inheritance of an individual. The interaction of sperm and egg culminates with the fusion of their cell membranes, triggering the molecular events that result in the formation of a new genetically distinct organism. Although we have a good cellular description of fertilisation in mammals, many of the molecules involved remain unknown, and especially the identity and role of cell surface proteins that are responsible for sperm-egg recognition, binding, and fusion. Here, we will highlight and discuss these gaps in our knowledge and how the role of some recently discovered sperm cell surface and secreted proteins contribute to our understanding of this fundamental process.


Subject(s)
Sperm-Ovum Interactions/physiology , Animals , Biological Evolution , Female , Fertilization/physiology , Humans , Male , Mammals , Membrane Fusion/physiology , Membrane Proteins/physiology , Mice , Sperm-Ovum Interactions/genetics , Spermatozoa/physiology , Zona Pellucida/physiology
16.
Elife ; 92020 06 02.
Article in English | MEDLINE | ID: mdl-32484434

ABSTRACT

The fusion of gamete membranes during fertilization is an essential process for sexual reproduction. Despite its importance, only three proteins are known to be indispensable for sperm-egg membrane fusion: the sperm proteins IZUMO1 and SPACA6, and the egg protein JUNO. Here we demonstrate that another sperm protein, TMEM95, is necessary for sperm-egg interaction. TMEM95 ablation in mice caused complete male-specific infertility. Sperm lacking this protein were morphologically normal exhibited normal motility, and could penetrate the zona pellucida and bind to the oolemma. However, once bound to the oolemma, TMEM95-deficient sperm were unable to fuse with the egg membrane or penetrate into the ooplasm, and fertilization could only be achieved by mechanical injection of one sperm into the ooplasm, thereby bypassing membrane fusion. These data demonstrate that TMEM95 is essential for mammalian fertilization.


Subject(s)
Fertilization , Infertility, Male/genetics , Membrane Proteins/metabolism , Seminal Plasma Proteins/metabolism , Sperm-Ovum Interactions/genetics , Animals , Cell Biology , Cell Membrane/metabolism , Developmental Biology , Female , Gene Editing , Genes, Reporter , Immunoglobulins/genetics , Immunoglobulins/metabolism , Male , Mammals , Membrane Proteins/genetics , Mice , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Seminal Plasma Proteins/genetics , Spermatozoa/physiology
17.
PLoS One ; 14(5): e0216584, 2019.
Article in English | MEDLINE | ID: mdl-31120914

ABSTRACT

Semen analysis is one of the standard diagnostic tools currently used to assess male infertility and reproductive toxicity. However, semen analysis has a limited ability to separate fertile from infertile populations. Additional methods to detect impaired fertility are needed. The purpose of the present study was to evaluate how spermatozoal RNA content varies with sociodemographic and behavior/lifestyle factors, and to determine if spermatozoal large and small RNAs discriminate normal from abnormal spermatozoa. Semen specimens were collected from 133 men aged between 18 to 55 years undergoing semen analysis as part of couple infertility evaluation while 10 proven fertile donors were recruited as control group. Semen samples were classified as normal or abnormal according to World Health Organization (WHO) 2010 criteria. Sperm RNAs were extracted after somatic cells were lysed, and the association of large or small RNA content with semen quality and sociodemographic and behavioral/lifestyle factors was evaluated using a generalized additive model and one-way ANOVA. Inverse relationship was observed between large RNA content and sperm parameters such as sperm count, density and motility. Large RNA content per sperm was significantly increased in semen samples showing abnormal number of round cells. Furthermore, sperm motility was inversely associated with spermatozoal small RNA contents. Grouping donors by the number of semen abnormalities, we observed significant increased spermatozoal large and small RNA content in men with more than two semen abnormalities. Alcohol consumption was strongly associated with increased large RNA per sperm concentration after adjustment for age and BMI. Our study demonstrates a strong relationship between spermatozoal large RNA content and poor semen characteristics that may lead to a role in the assessment of male fertility, and may be used as an endpoint for reproductive toxicology risk assessment.


Subject(s)
Infertility, Male/pathology , Life Style , RNA/analysis , Semen/chemistry , Socioeconomic Factors , Spermatozoa/metabolism , Adolescent , Adult , Case-Control Studies , Humans , Infertility, Male/genetics , Infertility, Male/metabolism , Male , Middle Aged , RNA/genetics , RNA/metabolism , Sperm Motility , Young Adult
18.
Environ Toxicol Pharmacol ; 68: 1-3, 2019 May.
Article in English | MEDLINE | ID: mdl-30836291

ABSTRACT

Trichloroethylene (TCE) is a persistent environmental contaminant that causes male reproductive toxicity. We investigated whether transient increases in TCE exposure modulated male reproductive toxicity by exposing rats via daily oral to repeated gavage exposures (1000 mg/kg/day) and through drinking water (0.6% TCE) for 14 weeks. The gavage route resulted in reversible reduction of epididymis weight, and reduced body weight that persisted for up to 12-weeks after cessation of exposure. Physiologically-based pharmacokinetic modeling predicted that the gavage route results in higher Cmax and AUC exposure of TCE compared to drinking water exposure, explaining the observed differences in toxicity between dosing regimens.


Subject(s)
Solvents/toxicity , Trichloroethylene/toxicity , Administration, Oral , Animals , Drinking Water , Male , Models, Biological , Rats, Inbred F344 , Solvents/pharmacokinetics , Sperm Motility/drug effects , Trichloroethylene/blood , Trichloroethylene/pharmacokinetics
19.
Swiss Med Wkly ; 147: w14511, 2017.
Article in English | MEDLINE | ID: mdl-29063525

ABSTRACT

AIMS OF THE STUDY: Skin cancer is a burden to healthcare and patients worldwide. The incidence of skin cancer has been rising during recent decades and this trend is expected to continue in the future. Numerous risk factors have been identified and prevention strategies developed. The Euromelanoma campaign is a pan-European skin cancer prevention programme, targeted to both primary and secondary prevention of malignant melanoma. The current study aimed to evaluate the results of the Swiss skin cancer screening day 2016. METHODS: A questionnaire was used to obtain data on characteristics and suspected skin cancers of all participants. Follow-up of patients with suspicious lesions was performed 3 to 6 months later. RESULTS: During the campaign, 2795 people were screened. Of the screened individuals, 157 participants (58% female, 42% male; mean age 58.8 years) underwent further evaluations; 6 cutaneous malignant melanomas, 21 basal cell carcinomas and 2 squamous cell carcinomas were detected. Detection rates were 0.21% for cutaneous melanoma, 0.75% for basal cell carcinoma and 0.07% for squamous cell carcinoma. CONCLUSIONS: Our study provides an up-to-date evaluation of the Swiss Euromelanoma campaign 2016. The results are mostly in line with data from other European studies. Considering the morbidity, mortality and financial and social impact of skin cancer, the capacity to raise awareness of risk factors, skin cancer prevention methods and educating high-risk and at-risk individuals, we may assume that a National Screening Day has a crucial impact on the public health system.


Subject(s)
Early Detection of Cancer/trends , Health Promotion/trends , Mass Screening , Skin Neoplasms/epidemiology , Aged , Carcinoma/diagnosis , Early Detection of Cancer/methods , Female , Health Promotion/organization & administration , Humans , Incidence , Male , Melanoma/diagnosis , Middle Aged , Risk Factors , Skin Neoplasms/diagnosis , Skin Neoplasms/prevention & control , Surveys and Questionnaires , Switzerland/epidemiology
20.
Int J Oncol ; 50(6): 2171-2179, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28498441

ABSTRACT

Angiogenesis is the main process responsible for tumor growth and metastatization. The principal effector of such mechanism is the vascular endothelial growth factor (VEGF) secreted by cancer cells and other components of tumor microenvironment. Radiolabeled VEGF analogues may provide a useful tool to noninvasively image tumor lesions and evaluate the efficacy of anti-angiogenic drugs that block the VEGFR pathway. Aim of the present study was to radiolabel the human VEGF165 analogue with 99mTechnetium (99mTc) and to evaluate the expression of VEGFR in both cancer and endothelial cells in the tumor microenvironment. 99mTc-VEGF showed in vitro binding to HUVEC cells and in vivo to xenograft tumors in mice (ARO, K1 and HT29). By comparing in vivo data with immunohistochemical analysis of excised tumors we found an inverse correlation between 99mTc-VEGF165 uptake and VEGF histologically detected, but a positive correlation with VEGF receptor expression (VEGFR1). Results of our studies indicate that endogenous VEGF production by cancer cells and other cells of tumor microenvironment should be taken in consideration when performing scintigraphy with radiolabeled VEGF, because of possible false negative results due to saturation of VEGFRs.


Subject(s)
Neovascularization, Pathologic/diagnostic imaging , Technetium/administration & dosage , Tumor Microenvironment/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics , Angiogenesis Inhibitors/administration & dosage , Animals , Gene Expression Regulation, Neoplastic/genetics , HT29 Cells , Human Umbilical Vein Endothelial Cells , Humans , Mice , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Technetium/chemistry , Tumor Microenvironment/drug effects , Vascular Endothelial Growth Factor A/administration & dosage , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor Receptor-1/isolation & purification , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...