Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(3): 113866, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38416638

ABSTRACT

To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-µm diameter limit for 3D migration through gaps in the extracellular matrix. We show that the nuclear shape change is partially attained through reduced cell adhesion, whereas improved 3D migration is achieved through reprogramming of the actin cytoskeleton. Specifically, our data point to a model whereby the phosphorylation of cofilin-1 at serine 41 drives the assembly of a cofilin-actomyosin ring proximal to the nucleus and enhances migration through 3D collagen gels. In summary, these data describe signaling events through which dendritic cells deform their nucleus and enhance their migratory capacity.


Subject(s)
Actin Depolymerizing Factors , Actomyosin , Actin Depolymerizing Factors/metabolism , Cell Movement/physiology , Actomyosin/metabolism , Cytokinesis , Cofilin 1/metabolism , Extracellular Matrix/metabolism , Dendritic Cells/metabolism
2.
Immunol Lett ; 265: 7-15, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38122906

ABSTRACT

The membrane protein CD36 is a lipid transporter, scavenger receptor, and receptor for the antiangiogenic protein thrombospondin 1 (TSP1). CD36 is expressed by cancer cells and by many associated cells including various cancer-infiltrating immune cell types. Thereby, CD36 plays critical roles in cancer, and it has been reported to affect cancer growth, metastasis, angiogenesis, and drug resistance. However, these roles are partly contradictory, as CD36 has been both reported to promote and inhibit cancer progression. Moreover, the mechanisms are also partly contradictory, because CD36 has been shown to exert opposite cellular effects such as cell division, senescence and cell death. This review provides an overview of the diverse effects of CD36 on tumor progression, aiming to shed light on its diverse pro- and anti-cancer roles, and the implications for therapeutic targeting.


Subject(s)
CD36 Antigens , Neoplasms , Humans , CD36 Antigens/metabolism , Neoplasms/therapy , Membrane Proteins/metabolism , Lipoproteins, LDL/metabolism
3.
Immunol Cell Biol ; 101(8): 727-734, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37332154

ABSTRACT

The Golgi membrane protein GOLM1/GP73/GOLPH2 has been found to impact cytokine production in both infectious disease and cancer. In viral infections, GOLM1 levels are increased, and this lowers the production of type I interferons and other inflammatory cytokines. However, elevated GOLM1 expression levels due to mutations are linked to a higher production of interleukin (IL)-6 during Candida infections, potentially explaining an increased susceptibility to candidemia in individuals carrying these mutations. In cancer, the protease Furin produces a soluble form of GOLM1 that has oncogenic properties by promoting the production of the chemokine CCL2 and suppressing the production of inflammatory cytokines such as IL-12 and interferon gamma. This review will focus on the role of GOLM1 in cytokine production, highlighting how it can both promote and inhibit cytokine production. It is crucial to understand this in order to effectively target GOLM1 for therapeutic purposes in diseases associated with abnormal cytokine production, including cancer and infectious disease.

4.
Nat Commun ; 13(1): 3799, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778407

ABSTRACT

Atherosclerosis is a chronic inflammatory disease driven by hypercholesterolemia. During aging, T cells accumulate cholesterol, potentially affecting inflammation. However, the effect of cholesterol efflux pathways mediated by ATP-binding cassette A1 and G1 (ABCA1/ABCG1) on T cell-dependent age-related inflammation and atherosclerosis remains poorly understood. In this study, we generate mice with T cell-specific Abca1/Abcg1-deficiency on the low-density-lipoprotein-receptor deficient (Ldlr-/-) background. T cell Abca1/Abcg1-deficiency decreases blood, lymph node, and splenic T cells, and increases T cell activation and apoptosis. T cell Abca1/Abcg1-deficiency induces a premature T cell aging phenotype in middle-aged (12-13 months) Ldlr-/- mice, reflected by upregulation of senescence markers. Despite T cell senescence and enhanced T cell activation, T cell Abca1/Abcg1-deficiency decreases atherosclerosis and aortic inflammation in middle-aged Ldlr-/- mice, accompanied by decreased T cells in atherosclerotic plaques. We attribute these effects to T cell apoptosis downstream of T cell activation, compromising T cell functionality. Collectively, we show that T cell cholesterol efflux pathways suppress T cell apoptosis and senescence, and induce atherosclerosis in middle-aged Ldlr-/- mice.


Subject(s)
Atherosclerosis , T-Lymphocytes , Animals , Apoptosis , Atherosclerosis/genetics , Biological Transport , Immunologic Deficiency Syndromes , Inflammation , Mice , Thymus Gland/abnormalities
5.
Front Immunol ; 12: 763044, 2021.
Article in English | MEDLINE | ID: mdl-35087515

ABSTRACT

Cytolytic T cell responses are predicted to be biased towards membrane proteins. The peptide-binding grooves of most alleles of histocompatibility complex class I (MHC-I) are relatively hydrophobic, therefore peptide fragments derived from human transmembrane helices (TMHs) are predicted to be presented more often as would be expected based on their abundance in the proteome. However, the physiological reason of why membrane proteins might be over-presented is unclear. In this study, we show that the predicted over-presentation of TMH-derived peptides is general, as it is predicted for bacteria and viruses and for both MHC-I and MHC-II, and confirmed by re-analysis of epitope databases. Moreover, we show that TMHs are evolutionarily more conserved, because single nucleotide polymorphisms (SNPs) are present relatively less frequently in TMH-coding chromosomal regions compared to regions coding for extracellular and cytoplasmic protein regions. Thus, our findings suggest that both cytolytic and helper T cells are more tuned to respond to membrane proteins, because these are evolutionary more conserved. We speculate that TMHs are less prone to mutations that enable pathogens to evade T cell responses.


Subject(s)
Antigen Presentation/genetics , Epitopes, T-Lymphocyte/genetics , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class I/genetics , Membrane Proteins/genetics , Protein Structure, Secondary/genetics , Alleles , Antigen Presentation/immunology , Chromosomes/genetics , Chromosomes/immunology , Cytoplasm/genetics , Cytoplasm/immunology , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Humans , Membrane Proteins/immunology , Peptides/genetics , Peptides/immunology , Polymorphism, Single Nucleotide/genetics , Polymorphism, Single Nucleotide/immunology , T-Lymphocytes, Helper-Inducer/immunology
6.
Cells ; 10(1)2020 12 27.
Article in English | MEDLINE | ID: mdl-33375410

ABSTRACT

The PIKfyve inhibitor apilimod is currently undergoing clinical trials for treatment of COVID-19. However, although apilimod might prevent viral invasion by inhibiting host cell proteases, the same proteases are critical for antigen presentation leading to T cell activation and there is good evidence from both in vitro studies and the clinic that apilimod blocks antiviral immune responses. We therefore warn that the immunosuppression observed in many COVID-19 patients might be aggravated by apilimod.


Subject(s)
Antiviral Agents/adverse effects , COVID-19 Drug Treatment , Hydrazones/adverse effects , Morpholines/adverse effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/adverse effects , Pyrimidines/adverse effects , SARS-CoV-2/drug effects , Antiviral Agents/pharmacology , COVID-19/immunology , Humans , Hydrazones/pharmacology , Morpholines/pharmacology , Peptide Hydrolases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Protease Inhibitors/pharmacology , Pyrimidines/pharmacology , Serine Endopeptidases/metabolism
7.
Microorganisms ; 9(1)2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33375077

ABSTRACT

Amino acids are essential metabolites but can also be toxic when present at high levels intracellularly. Substrate-induced downregulation of amino acid transporters in Saccharomyces cerevisiae is thought to be a mechanism to avoid this toxicity. It has been shown that unregulated uptake by the general amino acid permease Gap1 causes cells to become sensitive to amino acids. Here, we show that overexpression of eight other amino acid transporters (Agp1, Bap2, Can1, Dip5, Gnp1, Lyp1, Put4, or Tat2) also induces a growth defect when specific single amino acids are present at concentrations of 0.5-5 mM. We can now state that all proteinogenic amino acids, as well as the important metabolite ornithine, are growth inhibitory to S. cerevisiae when transported into the cell at high enough levels. Measurements of initial transport rates and cytosolic pH show that toxicity is due to amino acid accumulation and not to the influx of co-transported protons. The amino acid sensitivity phenotype is a useful tool that reports on the in vivo activity of transporters and has allowed us to identify new transporter-specific substrates.

8.
J Cell Sci ; 134(5)2020 09 01.
Article in English | MEDLINE | ID: mdl-32873733

ABSTRACT

The intracellular pathogens Listeria monocytogenes, Salmonella enterica, Shigella spp. and Staphylococcus aureus are major causes of foodborne illnesses. Following the ingestion of contaminated food or beverages, pathogens can invade epithelial cells, immune cells and other cell types. Pathogens survive and proliferate intracellularly via two main strategies. First, the pathogens can remain in membrane-bound vacuoles and tailor organellar trafficking to evade host-cell defenses and gain access to nutrients. Second, pathogens can rupture the vacuolar membrane and proliferate within the nutrient-rich cytosol of the host cell. Although this virulence strategy of vacuolar escape is well known for L. monocytogenes and Shigella spp., it has recently become clear that S. aureus and Salmonella spp. also gain access to the cytosol, and that this is important for their survival and growth. In this Review, we discuss the molecular mechanisms of how these intracellular pathogens rupture the vacuolar membrane by secreting a combination of proteins that lyse the membranes or that remodel the lipids of the vacuolar membrane, such as phospholipases. In addition, we also propose that oxidation of the vacuolar membrane also contributes to cytosolic pathogen escape. Understanding these escape mechanisms could aid in the identification of new therapeutic approaches to combat foodborne pathogens.


Subject(s)
Listeria monocytogenes , Vacuoles , Cytosol , Salmonella , Staphylococcus aureus
9.
FEBS J ; 287(20): 4401-4414, 2020 10.
Article in English | MEDLINE | ID: mdl-32096906

ABSTRACT

Yeast amino acid transporters of the APC superfamily are responsible for the proton motive force-driven uptake of amino acids into the cell, which for most secondary transporters is a reversible process. The l-lysine proton symporter Lyp1 of Saccharomyces cerevisiae is special in that the Michaelis constant from out-to-in transport ( Kmout→in ) is much lower than Kmin→out , which allows accumulation of l-lysine to submolar concentration. It has been proposed that high intracellular lysine is part of the antioxidant mechanism of the cell. The molecular basis for the unique kinetic properties of Lyp1 is unknown. We compared the sequence of Lyp1 with APC para- and orthologues and find structural features that set Lyp1 apart, including differences in extracellular loop regions. We screened the extracellular loops by alanine mutagenesis and determined Lyp1 localization and activity and find positions that affect either the localization or activity of Lyp1. Half of the affected mutants are located in the extension of extracellular loop 3 or in a predicted α-helix in extracellular loop 4. Our data indicate that extracellular loops not only connect the transmembrane helices but also serve functionally important roles.


Subject(s)
Amino Acid Transport Systems, Basic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Transport Systems, Basic/analysis , Amino Acid Transport Systems, Basic/genetics , Computational Biology , Kinetics , Lysine/metabolism , Models, Molecular , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/analysis , Saccharomyces cerevisiae Proteins/genetics
10.
Microbiol Mol Biol Rev ; 83(4)2019 11 20.
Article in English | MEDLINE | ID: mdl-31619504

ABSTRACT

We review the mechanisms responsible for amino acid homeostasis in Saccharomyces cerevisiae and other fungi. Amino acid homeostasis is essential for cell growth and survival. Hence, the de novo synthesis reactions, metabolic conversions, and transport of amino acids are tightly regulated. Regulation varies from nitrogen pool sensing to control by individual amino acids and takes place at the gene (transcription), protein (posttranslational modification and allostery), and vesicle (trafficking and endocytosis) levels. The pools of amino acids are controlled via import, export, and compartmentalization. In yeast, the majority of the amino acid transporters belong to the APC (amino acid-polyamine-organocation) superfamily, and the proteins couple the uphill transport of amino acids to the electrochemical proton gradient. Although high-resolution structures of yeast amino acid transporters are not available, homology models have been successfully exploited to determine and engineer the catalytic and regulatory functions of the proteins. This has led to a further understanding of the underlying mechanisms of amino acid sensing and subsequent downregulation of transport. Advances in optical microscopy have revealed a new level of regulation of yeast amino acid transporters, which involves membrane domain partitioning. The significance and the interrelationships of the latest discoveries on amino acid homeostasis are put in context.


Subject(s)
Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Amino Acid Transport Systems/genetics , Biological Transport , Homeostasis , Nitrogen/metabolism , Protein Processing, Post-Translational , Transcription, Genetic
11.
iScience ; 11: 160-177, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30612035

ABSTRACT

Antigen presentation to T cells in major histocompatibility complex class II (MHC class II) requires the conversion of early endo/phagosomes into lysosomes by a process called maturation. Maturation is driven by the phosphoinositide kinase PIKfyve. Blocking PIKfyve activity by small molecule inhibitors caused a delay in the conversion of phagosomes into lysosomes and in phagosomal acidification, whereas production of reactive oxygen species (ROS) increased. Elevated ROS resulted in reduced activity of cathepsin S and B, but not X, causing a proteolytic defect of MHC class II chaperone invariant chain Ii processing. We developed a novel universal MHC class II presentation assay based on a bio-orthogonal "clickable" antigen and showed that MHC class II presentation was disrupted by the inhibition of PIKfyve, which in turn resulted in reduced activation of CD4+ T cells. Our results demonstrate a key role of PIKfyve in the processing and presentation of antigens, which should be taken into consideration when targeting PIKfyve in autoimmune disease and cancer.

12.
FASEB J ; 32(8): 4482-4493, 2018 08.
Article in English | MEDLINE | ID: mdl-29547703

ABSTRACT

The NaCl cotransporter (NCC) is essential for electrolyte homeostasis and control of blood pressure. The human SLC12A3 gene, which encodes NCC, gives rise to 3 isoforms, of which only the shortest isoform [NaCl cotransporter isoform 3 (NCC3)] has been studied extensively. All NCC isoforms share key phosphorylation sites at T55 and T60 that are essential mediators of NCC function. Recently, a novel phosphorylation site at S811 was identified in isoforms 1 and 2 [NaCl cotransporter splice variant (NCCSV)], which are only present in humans and higher primates. The aim of the current study, therefore, is to investigate the role of S811 phosphorylation in the regulation of NCC by a combination of biochemical and fluorescent microscopy analyses. We demonstrate that hypotonic low-chloride buffer increases S811 phosphorylation, whereas phosphorylation-deficient S811A mutant hinders phosphorylation at T55 and T60 in NCCSV and NCC3. NCCSV S811A impairs NCC3 activity in a dominant-negative fashion, although it does not affect plasma membrane abundance. This effect may be explained by the heterodimerization of NCCSV with NCC3. Taken together, our study highlights the dominant-negative effect of NCCSV on T55 and T60 phosphorylation and NCC activity. Here, we reveal a new function of NCCSV in humans that broadens the understanding on NCC regulation in blood pressure control.-Tutakhel, O. A. Z., Bianchi, F., Smits, D. A., Bindels, R. J. M., Hoenderop, J. G. J., van der Wijst, J. Dominant functional role of the novel phosphorylation site S811 in the human renal NaCl cotransporter.


Subject(s)
Kidney/metabolism , Phosphorylation/physiology , Protein Serine-Threonine Kinases/metabolism , Solute Carrier Family 12, Member 3/metabolism , Blood Pressure/physiology , Cell Line , HEK293 Cells , Humans , Protein Isoforms/metabolism
13.
Nat Commun ; 9(1): 501, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29402931

ABSTRACT

The plasma membrane (PM) of Saccharomyces cerevisiae contains membrane compartments, MCC/eisosomes and MCPs, named after the protein residents Can1 and Pma1, respectively. Using high-resolution fluorescence microscopy techniques we show that Can1 and the homologous transporter Lyp1 are able to diffuse into the MCC/eisosomes, where a limited number of proteins are conditionally trapped at the (outer) edge of the compartment. Upon addition of substrate, the immobilized proteins diffuse away from the MCC/eisosomes, presumably after taking a different conformation in the substrate-bound state. Our data indicate that the mobile fraction of all integral plasma membrane proteins tested shows extremely slow Brownian diffusion through most of the PM. We also show that proteins with large cytoplasmic domains, such as Pma1 and synthetic chimera of Can1 and Lyp1, are excluded from the MCC/eisosomes. We hypothesize that the distinct localization patterns found for these integral membrane proteins in S. cerevisiae arises from a combination of slow lateral diffusion, steric exclusion, and conditional trapping in membrane compartments.


Subject(s)
Amino Acid Transport Systems, Basic/chemistry , Cell Membrane/metabolism , Proton-Translocating ATPases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Amino Acid Transport Systems, Basic/metabolism , Cell Membrane/ultrastructure , Diffusion , Fluorescence Recovery After Photobleaching , Kinetics , Membrane Microdomains , Protein Conformation , Protein Transport , Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism
14.
Front Immunol ; 8: 1118, 2017.
Article in English | MEDLINE | ID: mdl-28959259

ABSTRACT

About a fourth of the human proteome is anchored by transmembrane helices (TMHs) to lipid membranes. TMHs require multiple hydrophobic residues for spanning membranes, and this shows a striking resemblance with the requirements for peptide binding to major histocompatibility complex (MHC) class I. It, therefore, comes as no surprise that bioinformatics analysis predicts an over-representation of TMHs among strong MHC class I (MHC-I) binders. Published peptide elution studies confirm that TMHs are indeed presented by MHC-I. This raises the question how membrane proteins are processed for MHC-I (cross-)presentation, with current research focusing on soluble antigens. The presentation of membrane-buried peptides is likely important in health and disease, as TMHs are considerably conserved and their presentation might prevent escape mutations by pathogens. Therefore, it could contribute to the disease correlations described for many human leukocyte antigen haplotypes.

15.
Sci Rep ; 6: 31443, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27550794

ABSTRACT

The import of basic amino acids in Saccharomyces cerevisiae has been reported to be unidirectional, which is not typical of how secondary transporters work. Since studies of energy coupling and transport kinetics are complicated in vivo, we purified the major lysine transporter (Lyp1) of yeast and reconstituted the protein into lipid vesicles. We show that the Michaelis constant (KM) of transport from out-to-in is well in the millimolar range and at least 3 to 4-orders of magnitude higher than that of transport in the opposite direction, disfavoring the efflux of solute via Lyp1. We also find that at low values of the proton motive force, the transport by Lyp1 is comparatively slow. We benchmarked the properties of eukaryotic Lyp1 to that of the prokaryotic homologue LysP and find that LysP has a similar KM for transport from in-to-out and out-to-in, consistent with rapid influx and efflux. We thus explain the previously described unidirectional nature of lysine transport in S. cerevisiae by the extraordinary kinetics of Lyp1 and provide a mechanism and rationale for previous observations. The high asymmetry in transport together with secondary storage in the vacuole allow the cell to accumulate basic amino acids to very high levels.


Subject(s)
Amino Acid Transport Systems, Basic/metabolism , Lysine/metabolism , Models, Biological , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Transport Systems, Basic/genetics , Biological Transport, Active/physiology , Kinetics , Lysine/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
16.
J Biol Chem ; 291(31): 16024-37, 2016 07 29.
Article in English | MEDLINE | ID: mdl-27226538

ABSTRACT

Amino acid permeases (AAPs) in the plasma membrane (PM) of Saccharomyces cerevisiae are responsible for the uptake of amino acids and involved in regulation of their cellular levels. Here, we report on a strong and complex module for PM association found in the C-terminal tail of AAPs. Using in silico analyses and mutational studies we found that the C-terminal sequences of Gap1, Bap2, Hip1, Tat1, Tat2, Mmp1, Sam3, Agp1, and Gnp1 are about 50 residues long, associate with the PM, and have features that discriminate them from the termini of organellar amino acid transporters. We show that this sequence (named PMasseq) contains an amphipathic α-helix and the FWC signature, which is palmitoylated by palmitoyltransferase Pfa4. Variations of PMasseq, found in different AAPs, lead to different mobilities and localization patterns, whereas the disruption of the sequence has an adverse effect on cell viability. We propose that PMasseq modulates the function and localization of AAPs along the PM. PMasseq is one of the most complex protein signals for plasma membrane association across species and can be used as a delivery vehicle for the PM.


Subject(s)
Amino Acid Transport Systems/genetics , Cell Membrane/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Amino Acid Transport Systems/metabolism , Cell Membrane/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Sequence Analysis, Protein
17.
J Biol Chem ; 287(31): 26052-9, 2012 Jul 27.
Article in English | MEDLINE | ID: mdl-22700980

ABSTRACT

The bacterial multidrug transporter EmrE is a dual-topology membrane protein and as such is able to insert into the membrane in two opposite orientations. The functional form of EmrE is a homodimer; however, the relative orientation of the subunits in the dimer is under debate. Using EmrE variants with fixed, opposite orientations in the membrane, we now show that, although the proteins are able to form parallel dimers, an antiparallel organization of the subunits in the dimer is preferred. Blue-native PAGE analyses of intact oligomers and disulfide cross-linking demonstrate that in membranes, the proteins form parallel dimers only if no oppositely orientated partner is present. Co-expression of oppositely orientated proteins almost exclusively yields antiparallel dimers. Finally, parallel dimers can be disrupted and converted into antiparallel dimers by heating of detergent-solubilized protein. Importantly, in vivo function is correlated clearly to the presence of antiparallel dimers. Our results suggest that an antiparallel arrangement of the subunits in the dimer is more stable than a parallel organization and likely corresponds to the functional form of the protein.


Subject(s)
Antiporters/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Antiporters/chemistry , Cystine/metabolism , Escherichia coli Proteins/chemistry , Protein Binding , Protein Multimerization , Protein Stability , Protein Structure, Quaternary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...