Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 8(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893146

ABSTRACT

Ceratocystis platani (CP), an ascomycetous fungus, is the agent of canker stain, a lethal vascular disease of Platanus species. Ceratocystis platani has been listed as a quarantine pest (EPPO A2 list) due to extensive damage caused in Southern Europe and the Mediterranean region. As traditional diagnostic assays are ineffective, a Real-Time PCR detection method based on EvaGreen, SYBR Green, and Taqman assays was previously developed, validated in-house, and included in the official EPPO standard PM7/14 (2). Here, we describe the results of a test performance study performed by nine European laboratories for the purpose of an interlaboratory validation. Verification of the DNA extracted from biological samples guaranteed the high quality of preparations, and the stability and the homogeneity of the aliquots intended for the laboratories. All of the laboratories reproduced nearly identical standard curves with efficiencies close to 100%. Testing of blind-coded DNA extracted from wood samples revealed that all performance parameters-diagnostic sensitivity, diagnostic specificity, accuracy and reproducibility-were best fit in most cases both at the laboratory and at the assay level. The previously established limit of detection, 3 fg per PCR reaction, was also validated with similar excellent results. The high interlaboratory performance of this Real-Time PCR method confirms its value as a primary tool to safeguard C. platani-free countries by way of an accurate monitoring, and to investigate the resistance level of potentially canker stain-resistant Platanus genotypes.

2.
Arch Virol ; 164(6): 1655-1660, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30941585

ABSTRACT

Grapevine Pinot gris disease (GPGD) has been associated with a trichovirus, namely grapevine Pinot gris virus (GPGV), although the virus has been reported in both symptomatic and asymptomatic plants. Despite the puzzling aetiology of the disease and potentially important role of GPGV, the number of fully sequenced isolates is still rather limited. With the aim of increasing the knowledge on intraspecific diversity and evolution, nine GPGV isolates were collected from different vineyards in the Friuli Venezia Giulia region (Northeast Italy), cloned, sequenced, and subjected to robust phylogenetic and other analyses. The results provided hints on the evolutionary history of the virus, the occurrence of recombination, and the presence of clade-specific SNPs in sites of putative protein modifications with potential impact on the interaction with the host.


Subject(s)
Flexiviridae/genetics , Plant Diseases/virology , Sequence Analysis, RNA/methods , Vitis/virology , Cloning, Molecular , Evolution, Molecular , Flexiviridae/classification , Flexiviridae/isolation & purification , Genome, Viral , Italy , Phylogeny
3.
PLoS One ; 14(3): e0214010, 2019.
Article in English | MEDLINE | ID: mdl-30889228

ABSTRACT

The Grapevine Pinot Gris disease (GPG-d) is a novel disease characterized by symptoms such as leaf mottling and deformation, which has been recently reported in grapevines, and mostly in Pinot gris. Plants show obvious symptoms at the beginning of the growing season, while during summer symptom recovery frequently occurs, manifesting as symptomless leaves. A new Trichovirus, named Grapevine Pinot gris virus (GPGV), which belongs to the family Betaflexiviridae was found in association with infected plants. The detection of the virus in asymptomatic grapevines raised doubts about disease aetiology. Therefore, the primary target of this work was to set up a reliable system for the study of the disease in controlled conditions, avoiding interfering factor(s) that could affect symptom development. To this end, two clones of the virus, pRI::GPGV-vir and pRI::GPGV-lat, were generated from total RNA collected from one symptomatic and one asymptomatic Pinot gris grapevine, respectively. The clones, which encompassed the entire genome of the virus, were used in Agrobacterium-mediated inoculation of Vitis vinifera and Nicotiana benthamiana plants. All inoculated plants developed symptoms regardless of their inoculum source, demonstrating a correlation between the presence of GPGV and symptomatic manifestations. Four months post inoculum, the grapevines inoculated with the pRI::GPGV-lat clone developed asymptomatic leaves that were still positive to GPGV detection. Three to four weeks later (i.e. ca. 5 months post inoculum), the same phenomenon was observed in the grapevines inoculated with pRI::GPGV-vir. This observation perfectly matches symptom progression in infected field-grown grapevines, suggesting a possible role for plant antiviral mechanisms, such as RNA silencing, in the recovery process.


Subject(s)
Flexiviridae/pathogenicity , Nicotiana/virology , Plant Diseases/virology , Vitis/virology , Agrobacterium/virology , DNA, Viral/genetics , Flexiviridae/genetics , Flexiviridae/ultrastructure , Genome, Viral , Microscopy, Electron, Transmission , Plant Leaves/ultrastructure , Plant Leaves/virology , Nicotiana/ultrastructure , Virulence , Vitis/ultrastructure
4.
Protoplasma ; 255(3): 923-935, 2018 May.
Article in English | MEDLINE | ID: mdl-29273825

ABSTRACT

Despite the increasing impact of Grapevine Pinot gris disease (GPG-disease) worldwide, etiology about this disorder is still uncertain. The presence of the putative causal agent, the Grapevine Pinot Gris Virus (GPGV), has been reported in symptomatic grapevines (presenting stunting, chlorotic mottling, and leaf deformation) as well as in symptom-free plants. Moreover, information on virus localization in grapevine tissues and virus-plant interactions at the cytological level is missing at all. Ultrastructural and cytochemical investigations were undertaken to detect virus particles and the associated cytopathic effects in field-grown grapevine showing different symptom severity. Asymptomatic greenhouse-grown grapevines, which tested negative for GPGV by real time RT-PCR, were sampled as controls. Multiplex real-time RT-PCR and ELISA tests excluded the presence of viruses included in the Italian certification program both in field-grown and greenhouse-grown grapevines. Conversely, evidence was found for ubiquitous presence of Grapevine Rupestris Stem Pitting-associated Virus (GRSPaV), Hop Stunt Viroid (HSVd), and Grapevine Yellow Speckle Viroid 1 (GYSVd-1) in both plant groups. Moreover, in every field-grown grapevine, GPGV was detected by real-time RT-PCR. Ultrastructural observations and immunogold labelling assays showed filamentous flexuous viruses in the bundle sheath cells, often located inside membrane-bound organelles. No cytological differences were observed among field-grown grapevine samples showing different symptom severity. GPGV localization and associated ultrastructural modifications are reported and discussed, in the perspective of assisting management and control of the disease.


Subject(s)
Flexiviridae/physiology , Plant Leaves/virology , Vitis/virology , Flexiviridae/ultrastructure , Plant Diseases/virology , Plant Leaves/ultrastructure , Subcellular Fractions/metabolism , Vitis/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...