Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 186(9): 1985-2001.e19, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37075754

ABSTRACT

Aneuploidy, the presence of chromosome gains or losses, is a hallmark of cancer. Here, we describe KaryoCreate (karyotype CRISPR-engineered aneuploidy technology), a system that enables the generation of chromosome-specific aneuploidies by co-expression of an sgRNA targeting chromosome-specific CENPA-binding ɑ-satellite repeats together with dCas9 fused to mutant KNL1. We design unique and highly specific sgRNAs for 19 of the 24 chromosomes. Expression of these constructs leads to missegregation and induction of gains or losses of the targeted chromosome in cellular progeny, with an average efficiency of 8% for gains and 12% for losses (up to 20%) validated across 10 chromosomes. Using KaryoCreate in colon epithelial cells, we show that chromosome 18q loss, frequent in gastrointestinal cancers, promotes resistance to TGF-ß, likely due to synergistic hemizygous deletion of multiple genes. Altogether, we describe an innovative technology to create and study chromosome missegregation and aneuploidy in the context of cancer and beyond.


Subject(s)
Centromere , Genetic Techniques , Humans , Aneuploidy , Centromere/genetics , Chromosome Deletion , Neoplasms/genetics , Clustered Regularly Interspaced Short Palindromic Repeats
2.
Proc Natl Acad Sci U S A ; 119(47): e2213835119, 2022 11 22.
Article in English | MEDLINE | ID: mdl-36395141

ABSTRACT

Somatic copy number alterations (SCNAs), generally (1) losses containing interferons and interferon-pathway genes, many on chromosome 9p, predict immune-cold, immune checkpoint therapy (ICT)-resistant tumors (2); however, genomic regions mediating these effects are unclear and probably tissue specific. Previously, 9p21.3 loss was found to be an early genetic driver of human papillomavirus-negative (HPV-) head and neck squamous cancer (HNSC), associated with an immune-cold tumor microenvironment (TME) signal, and recent evidence suggested that this TME-cold phenotype was greatly enhanced with 9p21 deletion size, notably encompassing band 9p24.1 (3). Here, we report multi-omic, -threshold and continuous-variable dissection of 9p21 and 9p24 loci (including depth and degree of somatic alteration of each band at each locus, and each gene at each band) and TME of four HPV- HNSC cohorts. Preferential 9p24 deletion, CD8 T-cell immune-cold associations were observed, driven by 9p24.1 loss, and in turn by an essential telomeric regulatory gene element, JAK2-CD274. Surprisingly, same genetic region gains were immune hot. Related 9p21-TME analyses were less evident. Inherent 9p-band-level influences on anti-PD1 ICT survival rates, coincident with TME patterns, were also observed. At a 9p24.1 whole-transcriptome expression threshold of 60th percentile, ICT survival rate exceeded that of lower expression percentiles and of chemotherapy; below this transcript threshold, ICT survival was inferior to chemotherapy, the latter unaffected by 9p24.1 expression level (P-values < 0.01, including in a PD-L1 immunohistochemistry-positive patient subgroup). Whole-exome analyses of 10 solid-tumor types suggest that these 9p-related ICT findings could be relevant to squamous cancers, in which 9p24.1 gain/immune-hot associations exist.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Tumor Microenvironment/genetics , Immune Checkpoint Inhibitors , Papillomavirus Infections/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics
3.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Article in English | MEDLINE | ID: mdl-33952700

ABSTRACT

An aneuploid-immune paradox encompasses somatic copy-number alterations (SCNAs), unleashing a cytotoxic response in experimental precancer systems, while conversely being associated with immune suppression and cytotoxic-cell depletion in human tumors, especially head and neck cancer (HNSC). We present evidence from patient samples and cell lines that alterations in chromosome dosage contribute to an immune hot-to-cold switch during human papillomavirus-negative (HPV-) head and neck tumorigenesis. Overall SCNA (aneuploidy) level was associated with increased CD3+ and CD8+ T cell microenvironments in precancer (mostly CD3+, linked to trisomy and aneuploidy), but with T cell-deficient tumors. Early lesions with 9p21.3 loss were associated with depletion of cytotoxic T cell infiltration in TP53 mutant tumors; and with aneuploidy were associated with increased NK-cell infiltration. The strongest driver of cytotoxic T cell and Immune Score depletion in oral cancer was 9p-arm level loss, promoting profound decreases of pivotal IFN-γ-related chemokines (e.g., CXCL9) and pathway genes. Chromosome 9p21.3 deletion contributed mainly to cell-intrinsic senescence suppression, but deletion of the entire arm was necessary to diminish levels of cytokine, JAK-STAT, and Hallmark NF-κB pathways. Finally, 9p arm-level loss and JAK2-PD-L1 codeletion (at 9p24) were predictive markers of poor survival in recurrent HPV- HNSC after anti-PD-1 therapy; likely amplified by independent aneuploidy-induced immune-cold microenvironments observed here. We hypothesize that 9p21.3 arm-loss expansion and epistatic interactions allow oral precancer cells to acquire properties to overcome a proimmunogenic aneuploid checkpoint, transform and invade. These findings enable distinct HNSC interception and precision-therapeutic approaches, concepts that may apply to other CN-driven neoplastic, immune or aneuploid diseases, and immunotherapies.


Subject(s)
Aneuploidy , Chromosome Deletion , Head and Neck Neoplasms/genetics , Immune Evasion , Papillomavirus Infections , Adult , Aged , Aged, 80 and over , B7-H1 Antigen , CD3 Complex , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Chromosomes , Cytokines , DNA Copy Number Variations , Gene Expression Regulation, Neoplastic , Genes, p53/genetics , Humans , Immune Evasion/genetics , Immunotherapy , Janus Kinase 2 , Middle Aged , Papillomavirus Infections/genetics , T-Lymphocytes, Cytotoxic , Tumor Microenvironment , Young Adult
4.
Curr Opin Cell Biol ; 63: 135-143, 2020 04.
Article in English | MEDLINE | ID: mdl-32092639

ABSTRACT

Tumors arise through waves of genetic alterations and clonal expansion that allow tumor cells to acquire cancer hallmarks, such as genome instability and immune evasion. Recent genomic analyses showed that the vast majority of cancer driver genes are mutated in a tissue-dependent manner, that is, are altered in some cancers but not others. Often the tumor type also affects the likelihood of therapy response. What is the origin of tissue specificity in cancer? Recent studies suggest that both cell-intrinsic and cell-extrinsic factors play a role. On one hand, cell type-specific wiring of the cell signaling network determines the outcome of cancer driver gene mutations. On the other hand, the tumor cells' exposure to tissue-specific microenvironments (e.g. immune cells) also contributes to shape the tissue specificity of driver genes and of therapy response. In the future, a more complete understanding of tissue specificity in cancer may inform methods to better predict and improve therapeutic outcomes.


Subject(s)
Neoplasms/classification , Neoplasms/genetics , Neoplasms/pathology , Animals , Gene Expression Regulation, Neoplastic , Genomic Instability/physiology , Humans , Mutation/physiology , Neoplasms/metabolism , Oncogenes/physiology , Organ Specificity/genetics , Signal Transduction/genetics , Tumor Microenvironment/genetics
5.
Cell Rep ; 27(10): 2847-2858.e4, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31167132

ABSTRACT

To reveal the relative contribution of the recombination activating gene (RAG)1/2 nuclease to lymphomagenesis, we conducted a genome-wide analysis of T cell lymphomas from p53-deficient mice expressing or lacking RAG2. We found that while p53-/- lymphoblastic T cells harbor primarily ectopic DNA deletions, Rag2-/-p53-/- T cell lymphomas display complex genomic rearrangements associated with amplification of the chromosomal location 9qA4-5.3. We show that this amplicon is generated by breakage-fusion-bridge during mitosis and arises distinctly in T cell lymphomas originating from an early progenitor stage. Notably, we report amplification of the corresponding syntenic region (11q23) in a subset of human leukemia leading to the overexpression of several cancer genes, including MLL/KMT2A. Our findings provide direct evidence that lymphocytes undergo malignant transformation through distinct genome architectural routes that are determined by both RAG-dependent and RAG-independent DNA damage and a block in cell development.


Subject(s)
DNA Damage/genetics , DNA-Binding Proteins/metabolism , Genomic Instability/genetics , Lymphoma, T-Cell/genetics , T-Lymphocytes/metabolism , Animals , DNA-Binding Proteins/genetics , Gene Amplification , Gene Expression Regulation, Neoplastic/genetics , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lymphoma, T-Cell/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , RNA-Seq , T-Lymphocytes/pathology , Translocation, Genetic , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
6.
J Immunol Methods ; 451: 71-77, 2017 12.
Article in English | MEDLINE | ID: mdl-28882611

ABSTRACT

Antigen receptor gene assembly is accomplished in developing lymphocytes by the V(D)J recombination reaction, which can be separated into two steps: DNA cleavage by the recombination-activating gene (RAG) nuclease and joining of DNA double strand breaks (DSBs) by components of the nonhomologous end joining (NHEJ) pathway. Deficiencies for NHEJ factors can result in immunodeficiency and a propensity to accumulate genomic instability, thus highlighting the importance of identifying all players in this process and deciphering their functions. Bcl2 transgenic v-Abl kinase-transformed pro-B cells provide a pseudo-physiological cellular system to study V(D)J recombination. Treatment of v-Abl/Bcl2 pro-B cells with the Abl kinase inhibitor Imatinib leads to G1 cell cycle arrest, the rapid induction of Rag1/2 gene expression and V(D)J recombination. In this system, the Bcl2 transgene alleviates Imatinib-induced apoptosis enabling the analysis of induced V(D)J recombination. Although powerful, the use of mouse models carrying the Bcl2 transgene for the generation of v-Abl pro-B cell lines is time and money consuming. Here, we describe a method for generating v-Abl/Bcl2 pro-B cell lines from wild type mice and for performing gene knock-out using episomal CRISPR/Cas9 targeting vectors. Using this approach, we generated distinct NHEJ-deficient pro-B cell lines and quantified V(D)J recombination levels in these cells. Furthermore, this methodology can be adapted to generate pro-B cell lines deficient for any gene suspected to play a role in V(D)J recombination, and more generally DSB repair.


Subject(s)
CRISPR-Associated Proteins/genetics , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Breaks, Double-Stranded , Gene Editing/methods , Precursor Cells, B-Lymphoid/metabolism , Recombinational DNA Repair , Animals , Apoptosis/drug effects , CRISPR-Associated Proteins/metabolism , Cell Line, Transformed , DNA End-Joining Repair , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , G1 Phase Cell Cycle Checkpoints/drug effects , Genotype , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Imatinib Mesylate/pharmacology , Mice, Inbred C57BL , Oncogene Proteins v-abl/antagonists & inhibitors , Oncogene Proteins v-abl/genetics , Oncogene Proteins v-abl/metabolism , Phenotype , Precursor Cells, B-Lymphoid/drug effects , Precursor Cells, B-Lymphoid/pathology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Recombinational DNA Repair/drug effects
7.
Cell Rep ; 16(11): 2967-2979, 2016 09 13.
Article in English | MEDLINE | ID: mdl-27601299

ABSTRACT

Paralog of XRCC4 and XLF (PAXX) is a member of the XRCC4 superfamily and plays a role in nonhomologous end-joining (NHEJ), a DNA repair pathway critical for lymphocyte antigen receptor gene assembly. Here, we find that the functions of PAXX and XLF in V(D)J recombination are masked by redundant joining activities. Thus, combined PAXX and XLF deficiency leads to an inability to join RAG-cleaved DNA ends. Additionally, we demonstrate that PAXX function in V(D)J recombination depends on its interaction with Ku. Importantly, we show that, unlike XLF, the role of PAXX during the repair of DNA breaks does not overlap with ATM and the RAG complex. Our findings illuminate the role of PAXX in V(D)J recombination and support a model in which PAXX and XLF function during NHEJ repair of DNA breaks, whereas XLF, the RAG complex, and the ATM-dependent DNA damage response promote end joining by stabilizing DNA ends.


Subject(s)
B-Lymphocytes/metabolism , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/chemistry , Sequence Homology, Amino Acid , V(D)J Recombination/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , CRISPR-Cas Systems/genetics , DNA Damage , DNA Repair , DNA-Binding Proteins/metabolism , Gene Deletion , Gene Editing , Gene Rearrangement, B-Lymphocyte , Immunoglobulins/genetics , Ku Autoantigen/metabolism , Models, Biological , Oncogene Proteins v-abl/metabolism
8.
Nat Genet ; 47(6): 607-14, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25938942

ABSTRACT

Glucocorticoids are universally used in the treatment of acute lymphoblastic leukemia (ALL), and resistance to glucocorticoids in leukemia cells confers poor prognosis. To elucidate mechanisms of glucocorticoid resistance, we determined the prednisolone sensitivity of primary leukemia cells from 444 patients newly diagnosed with ALL and found significantly higher expression of CASP1 (encoding caspase 1) and its activator NLRP3 in glucocorticoid-resistant leukemia cells, resulting from significantly lower somatic methylation of the CASP1 and NLRP3 promoters. Overexpression of CASP1 resulted in cleavage of the glucocorticoid receptor, diminished the glucocorticoid-induced transcriptional response and increased glucocorticoid resistance. Knockdown or inhibition of CASP1 significantly increased glucocorticoid receptor levels and mitigated glucocorticoid resistance in CASP1-overexpressing ALL. Our findings establish a new mechanism by which the NLRP3-CASP1 inflammasome modulates cellular levels of the glucocorticoid receptor and diminishes cell sensitivity to glucocorticoids. The broad impact on the glucocorticoid transcriptional response suggests that this mechanism could also modify glucocorticoid effects in other diseases.


Subject(s)
Carrier Proteins/metabolism , Caspase 1/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/enzymology , Receptors, Glucocorticoid/metabolism , Adolescent , Antineoplastic Agents, Hormonal/pharmacology , Base Sequence , Child , Child, Preschool , DNA Methylation , Drug Resistance, Neoplasm , Drug Screening Assays, Antitumor , Gene Expression Regulation, Leukemic , HEK293 Cells , Humans , Infant , Infant, Newborn , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Neoplasm Recurrence, Local/enzymology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prednisolone/pharmacology , Proteolysis , Transcription, Genetic , Tumor Cells, Cultured , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...