Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
1.
iScience ; 27(6): 109871, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38784005

ABSTRACT

For dexterous control of the hand, humans integrate sensory information and prior knowledge regarding their bodies and the world. We studied the role of touch in hand motor control by challenging a fundamental prior assumption-that self-motion of inanimate objects is unlikely upon contact. In a reaching task, participants slid their fingertips across a robotic interface, with their hand hidden from sight. Unbeknownst to the participants, the robotic interface remained static, followed hand movement, or moved in opposition to it. We considered two hypotheses. Either participants were able to account for surface motion or, if the stationarity assumption held, they would integrate the biased tactile cues and proprioception. Motor errors consistent with the latter hypothesis were observed. The role of visual feedback, tactile sensitivity, and friction was also investigated. Our study carries profound implications for human-machine collaboration in a world where objects may no longer conform to the stationarity assumption.

2.
Cancer Immunol Res ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683145

ABSTRACT

The prognosis of patients with acute myeloid leukemia (AML) is limited, especially for elderly or unfit patients not eligible for hematopoietic stem cell (HSC) transplantation. The disease is driven by leukemic stem cells (LSCs), which are characterized by clonal heterogeneity and resistance to conventional therapy. These cells are therefore believed to be a major cause of progression and relapse. We designed MP0533, a multispecific CD3-engaging DARPin (designed ankyrin repeat protein) that can simultaneously bind to three antigens on AML cells (CD33, CD123, and CD70), aiming to enable avidity-driven T cell-mediated killing of AML cells co-expressing at least two of the antigens. In vitro, MP0533 induced selective T cell-mediated killing of AML cell lines, as well as patient-derived AML blasts and LSCs, expressing two or more target antigens, while sparing healthy HSCs, blood, and endothelial cells. The higher selectivity also resulted in markedly lower levels of cytokine release in normal human blood compared to single antigen-targeting T-cell engagers. In xenograft AML mouse models, MP0533 induced tumor-localized T-cell activation and cytokine release, leading to complete eradication of the tumors while having no systemic adverse effects. These studies show that the multispecific-targeting strategy used with MP0533 holds promise for improved selectivity towards LSCs and efficacy against clonal heterogeneity, potentially bringing a new therapeutic option to this group of patients with high unmet need. MP0533 is currently being evaluated in a dose-escalation phase 1 study in patients with relapsed or refractory AML (NCT05673057).

3.
Science ; 383(6690): eabn3263, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38422184

ABSTRACT

Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.


Subject(s)
Enhancer Elements, Genetic , Eutheria , Evolution, Molecular , Gene Expression Regulation , Motor Cortex , Motor Neurons , Proteins , Vocalization, Animal , Animals , Chiroptera/genetics , Chiroptera/physiology , Vocalization, Animal/physiology , Motor Cortex/cytology , Motor Cortex/physiology , Chromatin/metabolism , Motor Neurons/physiology , Larynx/physiology , Epigenesis, Genetic , Genome , Proteins/genetics , Proteins/metabolism , Amino Acid Sequence , Eutheria/genetics , Eutheria/physiology , Machine Learning
4.
J Autoimmun ; 143: 103166, 2024 02.
Article in English | MEDLINE | ID: mdl-38219652

ABSTRACT

The complement system plays a central role in the pathogenesis of Systemic Lupus Erythematosus (SLE), but most studies have focused on the classical pathway. Ficolin-3 is the main initiator of the lectin pathway of complement in humans, but its role in systemic autoimmune disease has not been conclusively determined. Here, we combined biochemical and genetic approaches to assess the contribution of ficolin-3 to SLE risk and disease manifestations. Ficolin-3 activity was measured by a functional assay in serum or plasma samples from Swedish SLE patients (n = 786) and controls matched for age and sex (n = 566). Genetic variants in an extended 300 kb genomic region spanning the FCN3 locus were analyzed for their association with ficolin-3 activity and SLE manifestations in a Swedish multicenter cohort (n = 985). Patients with ficolin-3 activity in the highest tertile showed a strong enrichment in an SLE cluster defined by anti-Sm/DNA/nucleosome antibodies (OR 3.0, p < 0.001) and had increased rates of hematological disease (OR 1.4, p = 0.078) and lymphopenia (OR = 1.6, p = 0.039). Genetic variants associated with low ficolin-3 activity mapped to an extended haplotype in high linkage disequilibrium upstream of the FCN3 gene. Patients carrying the lead genetic variant associated with low ficolin-3 activity had a lower frequency of hematological disease (OR 0.67, p = 0.018) and lymphopenia (OR 0.63, p = 0.031) and fewer autoantibodies (p = 0.0019). Loss-of-function variants in the FCN3 gene were not associated with SLE, but four (0.5 %) SLE patients developed acquired ficolin-3 deficiency where ficolin-3 activity in serum was depleted following diagnosis of SLE. Taken together, our results provide genetic and biochemical evidence that implicate the lectin pathway in hematological SLE manifestations. We also identify lectin pathway activation through ficolin-3 as a factor that contributes to the autoantibody response in SLE.


Subject(s)
Hematologic Diseases , Lupus Erythematosus, Systemic , Lymphopenia , Humans , Antibodies, Antinuclear , Autoantibodies , Complement System Proteins , Ficolins , Lectins/genetics , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/epidemiology , Lupus Erythematosus, Systemic/genetics
5.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Article in English | MEDLINE | ID: mdl-37941194

ABSTRACT

The use of vibrotactile feedback is of growing interest in the field of prosthetics, but few devices fully integrate this technology in the prosthesis to transmit high-frequency contact information (such as surface roughness and first contact) arising from the interaction of the prosthetic device with external items. This study describes a wearable vibrotactile system for high-frequency tactile information embedded in the prosthetic socket. The device consists of two compact planar vibrotactile actuators in direct contact with the user's skin to transmit tactile cues. These stimuli are directly related to the acceleration profiles recorded with two IMUS placed on the distal phalanx of a soft under-actuated robotic prosthesis (Soft-Hand Pro). We characterized the system from a psychophysical point of view with fifteen able-bodied participants by computing participants' Just Noticeable Difference (JND) related to the discrimination of vibrotactile cues delivered on the index finger, which are associated with the exploration of different sandpapers. Moreover, we performed a pilot experiment with one SoftHand Pro prosthesis user by designing a task, i.e. Active Texture Identification, to investigate if our feedback could enhance users' roughness discrimination. Results indicate that the device can effectively convey contact and texture cues, which users can readily detect and distinguish.


Subject(s)
Artificial Limbs , Bionics , Humans , Prosthesis Design , Feedback, Sensory , Touch
7.
IEEE Trans Haptics ; 16(4): 760-769, 2023.
Article in English | MEDLINE | ID: mdl-37801383

ABSTRACT

Despite technological advancements, upper limb prostheses still face high abandonment/rejection rates due to limitations in control interfaces and the absence of force/tactile feedback. Improving these aspects is crucial for enhancing user acceptance and optimizing functional performance. This pilot study, therefore, aims to understand which sensory feedback in combination with a soft robotic prosthetic hand could provide advantages for amputees, including performing everyday tasks. Tactile cues provided are contact information, grasping force, degree of hand opening, and combinations of this information. To transfer such feedback, different wearable systems are used, based on either vibrotactile or force stimulation in a non-invasive modality matching approach. Five volunteers with a trans-radial amputation controlling the new prosthetic hand SoftHand Pro performed a study protocol including everyday tasks. The results indicate the preference of amputees for a single, i.e. non-combined, feedback modality. The choice of appropriate haptic feedback seems to be subject and task-specific. Furthermore, in alignment with the participants' feedback, force feedback, with adequate granularity and clarity, could potentially be the most valuable feedback among those presented. Finally, the study suggests that prosthetic solutions should be preferred where amputees are able to choose their feedback system.


Subject(s)
Amputees , Artificial Limbs , Touch Perception , Humans , Pilot Projects , Feedback , Haptic Technology , Touch Perception/physiology , Upper Extremity , Feedback, Sensory/physiology
8.
EBioMedicine ; 96: 104804, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37769433

ABSTRACT

BACKGROUND: In patients with idiopathic inflammatory myopathies (IIM), autoantibodies are associated with specific clinical phenotypes suggesting a pathogenic role of adaptive immunity. We explored if autoantibody profiles are associated with specific HLA genetic variants and clinical manifestations in IIM. METHODS: We included 1348 IIM patients and determined the occurrence of 14 myositis-specific or -associated autoantibodies. We used unsupervised cluster analysis to identify autoantibody-defined subgroups and logistic regression to estimate associations with clinical manifestations, HLA-DRB1, HLA-DQA1, HLA-DQB1 alleles, and amino acids imputed from genetic information of HLA class II and I molecules. FINDINGS: We identified eight subgroups with the following dominant autoantibodies: anti-Ro52, -U1RNP, -PM/Scl, -Mi2, -Jo1, -Jo1/Ro52, -TIF1γ or negative for all analysed autoantibodies. Associations with HLA-DRB1∗11, HLA-DRB1∗15, HLA-DQA1∗03, and HLA-DQB1∗03 were present in the anti-U1RNP-dominated subgroup. HLA-DRB1∗03, HLA-DQA1∗05, and HLA-DQB1∗02 alleles were overrepresented in the anti-PM/Scl and anti-Jo1/Ro52-dominated subgroups. HLA-DRB1∗16, HLA-DRB1∗07 alleles were most frequent in anti-Mi2 and HLA-DRB1∗01 and HLA-DRB1∗07 alleles in the anti-TIF1γ subgroup. The HLA-DRB1∗13, HLA-DQA1∗01 and HLA-DQB1∗06 alleles were overrepresented in the negative subgroup. Significant signals from variations in class I molecules were detected in the subgroups dominated by anti-Mi2, anti-Jo1/Ro52, anti-TIF1γ, and the negative subgroup. INTERPRETATION: Distinct HLA class II and I associations were observed for almost all autoantibody-defined subgroups. The associations support autoantibody profiles use for classifying IIM which would likely reflect underlying pathogenic mechanisms better than classifications based on clinical symptoms and/or histopathological features. FUNDING: See a detailed list of funding bodies in the Acknowledgements section at the end of the manuscript.


Subject(s)
Autoantibodies , Myositis , Humans , Alleles , Autoantibodies/genetics , Genetic Predisposition to Disease , Haplotypes , HLA-DRB1 Chains/genetics , Myositis/genetics , Myositis/immunology , Phenotype
9.
Genome Biol ; 24(1): 187, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37582787

ABSTRACT

BACKGROUND: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.


Subject(s)
Wolves , Dogs , Animals , Wolves/genetics , Chromosome Mapping , Alleles , Polymorphism, Single Nucleotide , Nucleotides , Demography
10.
Eur J Endocrinol ; 189(2): 235-241, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37553728

ABSTRACT

OBJECTIVE: Autoantibodies against the adrenal enzyme 21-hydroxylase is a hallmark manifestation in autoimmune Addison's disease (AAD). Steroid 21-hydroxylase is encoded by CYP21A2, which is located in the human leucocyte antigen (HLA) region together with the highly similar pseudogene CYP21A1P. A high level of copy number variation is seen for the 2 genes, and therefore, we asked whether genetic variation of the CYP21 genes is associated with AAD. DESIGN: Case-control study on patients with AAD and healthy controls. METHODS: Using next-generation DNA sequencing, we estimated the copy number of CYP21A2 and CYP21A1P, together with HLA alleles, in 479 Swedish patients with AAD and autoantibodies against 21-hydroxylase and in 1393 healthy controls. RESULTS: With 95% of individuals carrying 2 functional 21-hydroxylase genes, no difference in CYP21A2 copy number was found when comparing patients and controls. In contrast, we discovered a lower copy number of the pseudogene CYP21A1P among AAD patients (P = 5 × 10-44), together with associations of additional nucleotide variants, in the CYP21 region. However, the strongest association was found for HLA-DQB1*02:01 (P = 9 × 10-63), which, in combination with the DRB1*04:04-DQB1*03:02 haplotype, imposed the greatest risk of AAD. CONCLUSIONS: We identified strong associations between copy number variants in the CYP21 region and risk of AAD, although these associations most likely are due to linkage disequilibrium with disease-associated HLA class II alleles.


Subject(s)
Addison Disease , Humans , Addison Disease/genetics , Steroid 21-Hydroxylase/genetics , DNA Copy Number Variations/genetics , Case-Control Studies , Sweden/epidemiology , Autoantibodies
11.
IEEE Trans Haptics ; PP2023 May 03.
Article in English | MEDLINE | ID: mdl-37134036

ABSTRACT

In vision, Augmented Reality (AR) allows the superposition of digital content on real-world visual information, relying on the well-established See-through paradigm. In the haptic domain, a putative Feel-through wearable device should allow to modify the tactile sensation without masking the actual cutaneous perception of the physical objects. To the best of our knowledge, a similar technology is still far to be effectively implemented. In this work, we present an approach that allows, for the first time, to modulate the perceived softness of real objects using a Feel-through wearable that uses a thin fabric as interaction surface. During the interaction with real objects, the device can modulate the growth of the contact area over the fingerpad without affecting the force experienced by the user, thus modulating the perceived softness. To this aim, the lifting mechanism of our system warps the fabric around the fingerpad in a way proportional to the force exerted on the specimen under exploration. At the same time, the stretching state of the fabric is controlled to keep a loose contact with the fingerpad. We demonstrated that different softness perceptions for the same specimens can be elicited, by suitably controlling the lifting mechanism of the system.

12.
Sci Robot ; 8(78): eadd5434, 2023 05 17.
Article in English | MEDLINE | ID: mdl-37196072

ABSTRACT

Human manual dexterity relies critically on touch. Robotic and prosthetic hands are much less dexterous and make little use of the many tactile sensors available. We propose a framework modeled on the hierarchical sensorimotor controllers of the nervous system to link sensing to action in human-in-the-loop, haptically enabled, artificial hands.


Subject(s)
Robotic Surgical Procedures , Robotics , Touch Perception , Humans , Hand/physiology , Touch/physiology
13.
PLoS One ; 18(5): e0285081, 2023.
Article in English | MEDLINE | ID: mdl-37141211

ABSTRACT

Grasping an object is one of the most common and complex actions performed by humans. The human brain can adapt and update the grasp dynamics through information received from sensory feedback. Prosthetic hands can assist with the mechanical performance of grasping, however currently commercially available prostheses do not address the disruption of the sensory feedback loop. Providing feedback about a prosthetic hand's grasp force magnitude is a top priority for those with limb loss. This study tested a wearable haptic system, i.e., the Clenching Upper-Limb Force Feedback device (CUFF), which was integrated with a novel robotic hand (The SoftHand Pro). The SoftHand Pro was controlled with myoelectrics of the forearm muscles. Five participants with limb loss and nineteen able-bodied participants completed a constrained grasping task (with and without feedback) which required modulation of the grasp to reach a target force. This task was performed while depriving participants of incidental sensory sources (vision and hearing were significantly limited with glasses and headphones). The data were analyzed with Functional Principal Component Analysis (fPCA). CUFF feedback improved grasp precision for participants with limb loss who typically use body-powered prostheses as well as a sub-set of able-bodied participants. Further testing, that is more functional and allows participants to use all sensory sources, is needed to determine if CUFF feedback can accelerate mastery of myoelectric control or would benefit specific patient sub-groups.


Subject(s)
Artificial Limbs , Humans , Feedback , Prosthesis Design , Electromyography , Hand/physiology , Hand Strength/physiology , Feedback, Sensory/physiology
14.
Sensors (Basel) ; 23(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37050776

ABSTRACT

Wearable sensing solutions have emerged as a promising paradigm for monitoring human musculoskeletal state in an unobtrusive way. To increase the deployability of these systems, considerations related to cost reduction and enhanced form factor and wearability tend to discourage the number of sensors in use. In our previous work, we provided a theoretical solution to the problem of jointly reconstructing the entire muscular-kinematic state of the upper limb, when only a limited amount of optimally retrieved sensory data are available. However, the effective implementation of these methods in a physical, under-sensorized wearable has never been attempted before. In this work, we propose to bridge this gap by presenting an under-sensorized system based on inertial measurement units (IMUs) and surface electromyography (sEMG) electrodes for the reconstruction of the upper limb musculoskeletal state, focusing on the minimization of the sensors' number. We found that, relying on two IMUs only and eight sEMG sensors, we can conjointly reconstruct all 17 degrees of freedom (five joints, twelve muscles) of the upper limb musculoskeletal state, yielding a median normalized RMS error of 8.5% on the non-measured joints and 2.5% on the non-measured muscles.


Subject(s)
Upper Extremity , Wearable Electronic Devices , Humans , Biomechanical Phenomena , Motion
15.
Science ; 380(6643): eabn3943, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37104599

ABSTRACT

Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.


Subject(s)
Eutheria , Evolution, Molecular , Animals , Female , Humans , Conserved Sequence/genetics , Eutheria/genetics , Genome, Human
16.
Science ; 380(6643): eabn2937, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37104612

ABSTRACT

Thousands of genomic regions have been associated with heritable human diseases, but attempts to elucidate biological mechanisms are impeded by an inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function, agnostic to cell type or disease mechanism. Single-base phyloP scores from 240 mammals identified 3.3% of the human genome as significantly constrained and likely functional. We compared phyloP scores to genome annotation, association studies, copy-number variation, clinical genetics findings, and cancer data. Constrained positions are enriched for variants that explain common disease heritability more than other functional annotations. Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.


Subject(s)
Disease , Genetic Variation , Animals , Humans , Biological Evolution , Genome, Human , Genome-Wide Association Study , Genomics , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Disease/genetics
17.
IEEE Trans Haptics ; 16(4): 518-523, 2023.
Article in English | MEDLINE | ID: mdl-37099460

ABSTRACT

The perception of time is highly subjective and intertwined with space perception. In a well-known perceptual illusion, called Kappa effect, the distance between consecutive stimuli is modified to induce time distortions in the perceived inter-stimulus interval that are proportional to the distance between the stimuli. However, to the best of our knowledge, this effect has not been characterized and exploited in virtual reality (VR) within a multisensory elicitation framework. This paper investigates the Kappa effect elicited by concurrent visual-tactile stimuli delivered to the forearm, through a multimodal VR interface. This paper compares the outcomes of an experiment in VR with the results of the same experiment performed in the "physical world", where a multimodal interface was applied to participants' forearm to deliver controlled visual-tactile stimuli. Our results suggest that a multimodal Kappa effect can be elicited both in VR and in the physical world relying on concurrent visual-tactile stimulation. Moreover, our results confirm the existence of a relation between the ability of participants in discriminating the duration of time intervals and the magnitude of the experienced Kappa effect. These outcomes can be exploited to modulate the subjective perception of time in VR, paving the path toward more personalised human-computer interaction.


Subject(s)
Illusions , Time Perception , Touch Perception , Virtual Reality , Humans , Touch Perception/physiology , Touch , Illusions/physiology
18.
bioRxiv ; 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36945512

ABSTRACT

Although thousands of genomic regions have been associated with heritable human diseases, attempts to elucidate biological mechanisms are impeded by a general inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function that is agnostic to cell type or disease mechanism. Here, single base phyloP scores from the whole genome alignment of 240 placental mammals identified 3.5% of the human genome as significantly constrained, and likely functional. We compared these scores to large-scale genome annotation, genome-wide association studies (GWAS), copy number variation, clinical genetics findings, and cancer data sets. Evolutionarily constrained positions are enriched for variants explaining common disease heritability (more than any other functional annotation). Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.

19.
Genes (Basel) ; 14(2)2023 02 01.
Article in English | MEDLINE | ID: mdl-36833311

ABSTRACT

Pug dogs with thoracolumbar myelopathy (PDM) present with a specific clinical phenotype that includes progressive pelvic limb ataxia and paresis, commonly accompanied by incontinence. Vertebral column malformations and lesions, excessive scar tissue of the meninges, and central nervous system inflammation have been described. PDM has a late onset and affects more male than female dogs. The breed-specific presentation of the disorder suggests that genetic risk factors are involved in the disease development. To perform a genome-wide search for PDM-associated loci, we applied a Bayesian model adapted for mapping complex traits (BayesR) and a cross-population extended haplotype homozygosity test (XP-EHH) in 51 affected and 38 control pugs. Nineteen associated loci (harboring 67 genes in total, including 34 potential candidate genes) and three candidate regions under selection (with four genes within or next to the signal) were identified. The multiple candidate genes identified have implicated functions in bone homeostasis, fibrotic scar tissue, inflammatory responses, or the formation, regulation, and differentiation of cartilage, suggesting the potential relevance of these processes to the pathogenesis of PDM.


Subject(s)
Bone Diseases, Developmental , Spinal Cord Diseases , Animals , Dogs , Male , Female , Cicatrix , Bayes Theorem , Spinal Cord Diseases/veterinary , Thoracic Vertebrae , Genetic Loci
20.
IEEE Trans Haptics ; 16(1): 23-32, 2023.
Article in English | MEDLINE | ID: mdl-36449591

ABSTRACT

This paper reports about the effects of vibration direction and finger-pressing force on vibrotactile perception, with the goal of improving the effectiveness of haptic feedback on interactive surfaces. An experiment was conducted to assess the sensitivity to normal or tangential vibration at 250 Hz of a finger exerting constant pressing forces of 0.5 or 4.9 N. Results show that perception thresholds for normal vibration depend on the applied pressing force, significantly decreasing for the stronger force level. Conversely, perception thresholds for tangential vibrations are independent of the applied force, and approximately equal the lowest thresholds measured for normal vibration.


Subject(s)
Touch Perception , Vibration , Humans , Fingers , Upper Extremity , Sensation
SELECTION OF CITATIONS
SEARCH DETAIL
...