Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Res Pract Thromb Haemost ; 8(4): 102426, 2024 May.
Article in English | MEDLINE | ID: mdl-38882463

ABSTRACT

Background: The bleeding risk associated with direct oral anticoagulants (DOACs) remains a major concern, and rapid reversal of anticoagulant activity may be required. Although specific and nonspecific hemostatic biotherapies are available, there is a need for small-molecule DOAC reversal agents that are simple and cost-effective to produce, store, and administer. Objectives: To identify and characterize a small molecule with procoagulant activity as a DOAC reversal agent. Methods: We sought to identify a small procoagulant molecule by screening a chemical library with a plasma clotting assay. The selected molecule was assessed for its procoagulant properties and its ability to reverse the effects of the DOACs in a thrombin generation assay. Its activity as a DOAC reversal agent was also evaluated in a tail-clip bleeding assay in mice. Results: The hemostatic molecule (HeMo) dose-dependently promoted thrombin generation in plasma, with dose values effective in producing half-maximum response ranging between 3 and 5 µM, depending on the thrombin generation assay parameter considered. HeMo also restored impaired thrombin generation in DOAC-spiked plasma and reversed DOAC activity in the mouse bleeding model. HeMo significantly reduced apixaban-induced bleeding from 709 to 65 µL (vs 43 µL in controls; P < .01) and dabigatran-induced bleeding from 989 to 155 µL (vs 126 µL in controls; P < .01). Conclusion: HeMo is a small-molecule procoagulant that can counterbalance hemostatic disruption by a thrombin inhibitor (dabigatran) or factor Xa inhibitors (apixaban and rivaroxaban). The compound's effective clot formation and versatility make it a possible option for managing the inherent hemorrhagic risk during DOAC therapy.

3.
Thromb Haemost ; 122(9): 1469-1478, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35717947

ABSTRACT

Phosphomannomutase 2 (PMM2) deficiency is the most prevalent congenital disorder of glycosylation. It is associated with coagulopathy, including protein C deficiency. Since all components of the anticoagulant and cytoprotective protein C system are glycosylated, we sought to investigate the impact of an N-glycosylation deficiency on this system as a whole. To this end, we developed a PMM2 knockdown model in the brain endothelial cell line hCMEC/D3. The resulting PMM2low cells were less able to generate activated protein C (APC), due to lower surface expression of thrombomodulin and endothelial protein C receptor. The low protein levels were due to downregulated transcription of the corresponding genes (THBD and PROCR, respectively), which itself was related to downregulation of transcription regulators Krüppel-like factors 2 and 4 and forkhead box C2. PMM2 knockdown was also associated with impaired integrity of the endothelial cell monolayer-partly due to an alteration in the structure of VE-cadherin in adherens junctions. The expression of protease-activated receptor 1 (involved in the cytoprotective effects of APC on the endothelium) was not affected by PMM2 knockdown. Thrombin stimulation induced hyperpermeability in PMM2low cells. However, pretreatment of cells with APC before thrombin simulation was still associated with a barrier-protecting effect. Taken as a whole, our results show that the partial loss of PMM2 in hCMEC/D3 cells is associated with impaired activation of protein C and a relative increase in barrier permeability.


Subject(s)
Protein C , Thrombin , Congenital Disorders of Glycosylation , Endothelium , Glycosylation , Humans , Phosphotransferases (Phosphomutases)/deficiency
4.
J Thromb Haemost ; 20(7): 1653-1664, 2022 07.
Article in English | MEDLINE | ID: mdl-35445541

ABSTRACT

BACKGROUND: Protein S (PS) is a natural anticoagulant acting as a cofactor for activated protein C (APC) in the proteolytic inactivation of activated factors V (FVa) and VIII (FVIIIa), but also for tissue factor pathway inhibitor α (TFPIα) in the inhibition of activated factor X (FXa). OBJECTIVE: For therapeutic purposes, we aimed at generating single-domain antibodies (sdAbs) that could specifically modulate the APC-cofactor activity of PS in vivo. METHODS: A llama-derived immune library of sdAbs was generated and screened on recombinant human PS by phage display. PS binders were tested in a global activated partial thromboplastin time (APTT)-based APC-cofactor activity assay. RESULTS: A PS-specific sdAb (PS003) was found to enhance the APC-cofactor activity of PS in our APTT-based assay, and this enhancing effect was greater for a bivalent form of PS003 (PS003biv). Further characterization of PS003biv demonstrated that PS003biv also enhanced the APC-cofactor activity of PS in a tissue factor (TF)-induced thrombin generation assay and stimulated APC in the inactivation of FVa, but not FVIIIa, in plasma-based assays. Furthermore, PS003biv was directed against the sex hormone-binding globulin (SHBG)-like domain but did not inhibit the binding of PS to C4b-binding protein (C4BP) and did not interfere with the TFPIα-cofactor activity of PS. In mice, PS003biv exerted an antithrombotic effect in a FeCl3 -induced thrombosis model, while not affecting physiological hemostasis in a tail-clip bleeding model. DISCUSSION: Altogether, these results showed that pharmacological enhancement of the APC-cofactor activity of PS through an original anti-PS sdAb might constitute a promising and safe antithrombotic strategy.


Subject(s)
Protein S , Single-Domain Antibodies , Animals , Factor VIIIa/chemistry , Fibrinolytic Agents/pharmacology , Humans , Mice , Protein C/metabolism , Protein S/metabolism
6.
Thromb Haemost ; 122(4): 506-516, 2022 04.
Article in English | MEDLINE | ID: mdl-34134169

ABSTRACT

Septic shock is the archetypal clinical setting in which extensive crosstalk between inflammation and coagulation dysregulates the latter. The main anticoagulant systems are systematically impaired, depleted, and/or downregulated. Protein Z-dependent protease inhibitor (ZPI) is an anticoagulant serpin that not only targets coagulation factors Xa and XIa but also acts as an acute phase reactant whose plasma concentration rises in inflammatory settings. The objective of the present study was to assess the plasma ZPI antigen level in a cohort of patients suffering from septic shock with or without overt-disseminated intravascular coagulation (DIC). The plasma ZPI antigen level was approximately 2.5-fold higher in the patient group (n = 100; 38 with DIC and 62 without) than in healthy controls (n = 31). The elevation's magnitude did not appear to depend on the presence/absence of DIC. Furthermore, Western blots revealed the presence of cleaved ZPI in plasma from patients with severe sepsis, independently of the DIC status. In vitro, ZPI was proteolytically inactivated by purified neutrophil elastase (NE) and by NE on the surface of neutrophil extracellular traps (NETs). The electrophoretic pattern of ZPI after NE-catalyzed proteolysis was very similar to that resulting from the clotting process-suggesting that the cleaved ZPI observed in severe sepsis plasma is devoid of anticoagulant activity. Taken as a whole, our results (1) suggest that NE is involved in ZPI inactivation during sepsis, and (2) reveal a novel putative mechanism for the procoagulant activity of NETs in immunothrombosis.


Subject(s)
Disseminated Intravascular Coagulation , Extracellular Traps , Sepsis , Serpins , Shock, Septic , Anticoagulants/pharmacology , Blood Proteins , Disseminated Intravascular Coagulation/metabolism , Extracellular Traps/metabolism , Humans , Leukocyte Elastase/metabolism , Protease Inhibitors/metabolism , Proteolysis , Sepsis/metabolism , Serpins/metabolism , Shock, Septic/metabolism
7.
TH Open ; 5(2): e220-e229, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34189397

ABSTRACT

The protein Z (PZ)-dependent plasma protease inhibitor (ZPI) is a glycoprotein that inhibits factor XIa and, in the presence of PZ, FXa. Recently, ZPI has been shown to be an acute-phase protein (APP). As usually APPs downregulate the harmful effects of inflammation, we tested whether ZPI could modulate the increase of cytokines observed in inflammatory states. We observed that recombinant human ZPI (rhZPI) significantly decreases the levels of interleukin (IL)-1, IL-6, and tumor necrosis factor- α (TNF-α) induced by lipopolysaccharide (LPS) in a whole blood model. This inhibitory effect was unaffected by the presence of PZ or heparin. A ZPI mutant within the reactive loop center ZPI (Y387A), lacking anticoagulant activity, still had an anti-inflammatory activity. Surprisingly, rhZPI did not inhibit the synthesis of IL-6 or TNF-α when purified monocytes were stimulated by LPS, whereas the inhibitory effect was evidenced when lymphocytes were added to monocytes. The requirement of lymphocytes could be due to the synthesis of CCL5 (RANTES), a chemokine mainly produced by activated lymphocytes which is induced by rhZPI, and which can reduce the production of proinflammatory cytokines in whole blood. Lastly, we observed that the intraperitoneal injection of rhZPI significantly decreased LPS-induced IL-6 and TNF-α production in mouse plasma.

8.
Front Cardiovasc Med ; 7: 622778, 2020.
Article in English | MEDLINE | ID: mdl-33490121

ABSTRACT

Bleeding and thrombotic disorders result from imbalances in coagulation or fibrinolysis, respectively. Inhibitors from the serine protease inhibitor (serpin) family have a key role in regulating these physiological events, and thus stand out as potential therapeutic targets for modulating fibrin clot formation or dismantling. Here, we review the diversity of serpin-targeting strategies in the area of hemostasis, and detail the suggested use of modified serpins and serpin inhibitors (ranging from small-molecule drugs to antibodies) to treat or prevent bleeding or thrombosis.

9.
Hematology ; 24(1): 742-750, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31736432

ABSTRACT

Deep vein thrombosis is a common disease associated with a variety of complications including post-thrombotic syndrome as a late complication. It is now clear that in addition to classical deep vein thrombosis triggers such as blood flow disturbance, hypercoagulability, and vessel wall changes, inflammation has a key role in the pathophysiology of deep vein thrombosis, and there is a close relationship between inflammation and coagulation. As attested by changes in several plasma biomarkers, inflammation may have a significant role in the development of post-thrombotic syndrome. Here, we review the link between inflammation and deep vein thrombosis and thus the potential value of anti-inflammatory and/or anticoagulant drugs in the treatment of deep vein thrombosis and the prevention of post-thrombotic syndrome.


Subject(s)
Inflammation/complications , Venous Thrombosis/therapy , Humans , Venous Thrombosis/pathology
10.
J Thromb Haemost ; 17(11): 1798-1807, 2019 11.
Article in English | MEDLINE | ID: mdl-31271700

ABSTRACT

BACKGROUND: Congenital disorders of glycosylation are rare inherited diseases affecting many different proteins. The lack of glycosylation notably affects the hemostatic system and leads to deficiencies of both procoagulant and anticoagulant factors. OBJECTIVE: To assess the hemostatic balance in patients with multiple coagulation disorders by using a thrombin generation assay. METHOD: We performed conventional coagulation assays and a thrombin generation assay on samples from patients with congenital disorder of glycosylation. The thrombin generation assay was performed before and after activation of the protein C system by the addition of soluble thrombomodulin. RESULTS: A total of 35 patients were included: 71% and 57% had low antithrombin and factor XI levels, respectively. Protein C and protein S levels were abnormally low in 29% and 26% of the patients, respectively, whereas only 11% displayed low factor IX levels. Under baseline conditions, the thrombin generation assay revealed a significantly higher endogenous thrombin potential and thrombin peak in patients, relative to controls. After spiking with thrombomodulin, we observed impaired involvement of the protein C system. Hence, 54% of patients displayed a hypercoagulant phenotype in vitro. All the patients with a history of stroke-like episodes or thrombosis displayed this hypercoagulant phenotype. CONCLUSION: A thrombin generation assay revealed a hypercoagulant in vitro phenotype under baseline condition; this was accentuated by impaired involvement of the protein C system. This procoagulant phenotype may thus reflect the risk of severe vascular complications. Further research will have to determine whether the thrombin generation assay is predictive of vascular events.


Subject(s)
Blood Coagulation Disorders, Inherited/blood , Coagulation Protein Disorders/blood , Congenital Disorders of Glycosylation/blood , Thrombin/metabolism , Adolescent , Blood Coagulation/genetics , Blood Coagulation Disorders, Inherited/diagnosis , Blood Coagulation Disorders, Inherited/genetics , Child , Child, Preschool , Coagulation Protein Disorders/diagnosis , Coagulation Protein Disorders/genetics , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Paris , Phenotype , Retrospective Studies , Spain
11.
PLoS Pathog ; 14(4): e1006981, 2018 04.
Article in English | MEDLINE | ID: mdl-29630665

ABSTRACT

Purpura fulminans is a deadly complication of Neisseria meningitidis infections due to extensive thrombosis of microvessels. Although a Disseminated Intra-vascular Coagulation syndrome (DIC) is frequently observed during Gram negative sepsis, it is rarely associated with extensive thrombosis like those observed during meningococcemia, suggesting that the meningococcus induces a specific dysregulation of coagulation. Another specific feature of N. meningitidis pathogenesis is its ability to colonize microvessels endothelial cells via type IV pili. Importantly, endothelial cells are key in controlling the coagulation cascade through the activation of the potent anticoagulant Protein C (PC) thanks to two endothelial cell receptors among which the Endothelial Protein C Receptor (EPCR). Considering that congenital or acquired deficiencies of PC are associated with purpura fulminans, we hypothesized that a defect in the activation of PC following meningococcal adhesion to microvessels is responsible for the thrombotic events observed during meningococcemia. Here we showed that the adhesion of N. meningitidis on endothelial cells results in a rapid and intense decrease of EPCR expression by inducing its cleavage in a process know as shedding. Using siRNA experiments and CRISPR/Cas9 genome edition we identified ADAM10 (A Disintegrin And Metalloproteinase-10) as the protease responsible for this shedding. Surprisingly, ADAM17, the only EPCR sheddase described so far, was not involved in this process. Finally, we showed that this ADAM10-mediated shedding of EPCR induced by the meningococcal interaction with endothelial cells was responsible for an impaired activation of Protein C. This work unveils for the first time a direct link between meningococcal adhesion to endothelial cells and a severe dysregulation of coagulation, and potentially identifies new therapeutic targets for meningococcal purpura fulminans.


Subject(s)
ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Endothelial Protein C Receptor/metabolism , Endothelium, Vascular/pathology , Membrane Proteins/metabolism , Meningococcal Infections/complications , Microvessels/pathology , Protein C/metabolism , Purpura Fulminans/etiology , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Bacterial Adhesion , Blood Coagulation/physiology , Cells, Cultured , Endothelial Protein C Receptor/genetics , Endothelium, Vascular/metabolism , Endothelium, Vascular/microbiology , Humans , Membrane Proteins/genetics , Meningococcal Infections/microbiology , Microvessels/metabolism , Microvessels/microbiology , Neisseria meningitidis/physiology , Protein C/genetics , Purpura Fulminans/metabolism , Purpura Fulminans/pathology
12.
Br J Haematol ; 180(5): 715-720, 2018 03.
Article in English | MEDLINE | ID: mdl-29363751

ABSTRACT

Heparin anticoagulation followed by protamine reversal is commonly used in cardiopulmonary bypass (CPB). As an alternative to protamine, a recombinant inactive antithrombin (riAT) was designed as an antidote to heparin and was previously shown to be as potent as protamine in-vitro. In the present study, riAT was assessed for its ability to neutralize heparin after CPB in a rat model. After 60 min of CPB under heparin, rats received 5 mg/kg protamine, 37.5 mg/kg riAT or phosphate buffered saline (PBS) as placebo. Residual anticoagulant activity was assessed using the activated partial thromboplastin time assay before, and 10-30 min after reversion. Haemodynamic monitoring was performed and plasma histamine concentration was also measured. In this model, riAT appeared to be as efficient as protamine in neutralizing heparin. Ten minutes after injection, riAT and protamine both decreased heparin activity, to 1.8 ± 1.3 and 4.5 ± 1.4 u/ml, respectively (23.1 ± 5.1 u/ml in placebo group). Furthermore, evolution of mean carotid arterial pressure, heart rate and plasma histamine levels was comparable in rats treated with PBS or riAT, while protamine exhibited haemodynamic side effects and increased histamine plasma concentration. Thus, riAT could represent an advantage over protamine in CPB because it efficiently reverses heparin activity without negative effects on haemodynamic parameters and plasma histamine level.


Subject(s)
Anticoagulants/pharmacology , Cardiopulmonary Bypass , Heparin Antagonists/pharmacology , Heparin/pharmacology , Protamines/pharmacology , Animals , Antithrombins/pharmacology , Hemodynamics/drug effects , Histamine/metabolism , Male , Rats, Wistar
13.
Ann Intensive Care ; 7(1): 118, 2017 Dec 08.
Article in English | MEDLINE | ID: mdl-29222696

ABSTRACT

BACKGROUND: Septic shock-induced disseminated intravascular coagulation is responsible for increased occurrence of multiple organ dysfunction and mortality. Immunothrombosis-induced coagulopathy may contribute to hypercoagulability. We aimed at determining whether recombinant human thrombomodulin (rhTM) could control exaggerated immunothrombosis by studying procoagulant responses, fibrinolysis activity borne by microvesicles (MVs) and NETosis in septic shock. METHODS: In a septic shock model after a cecal ligation and puncture-induced peritonitis (H0), rats were treated with rhTM or a placebo at H18, resuscitated and monitored during 4 h. At H22, blood was sampled to perform coagulation tests, to characterize MVs and to detect neutrophils extracellular traps (NETs). Lungs were stained with hematoxylin-eosin for inflammatory injury assessment. RESULTS: Coagulopathy was attenuated in rhTM-treated septic rats compared to placebo-treated rats, as attested by a significant decrease in procoagulant annexin A5+-MVs and plasma procoagulant activity of phospholipids and by a significant increase in antithrombin levels (84 ± 8 vs. 64 ± 6%, p < 0.05), platelet count (582 ± 157 vs. 319 ± 91 × 109/L, p < 0.05) and fibrinolysis activity borne by MVs (2.9 ± 0.26 vs. 0.48 ± 0.29 U/mL urokinase, p < 0.05). Lung histological injury score showed significantly less leukocyte infiltration. Decreased procoagulant activity and lung injury were concomitant with decreased leukocyte activation as attested by plasma leukocyte-derived MVs and NETosis reduction after rhTM treatment (neutrophil elastase/DNA: 93 ± 33 vs. 227 ± 48 and citrullinated histones H3/DNA: 96 ± 16 vs. 242 ± 180, mOD for 109 neutrophils/L, p < 0.05). CONCLUSION: Thrombomodulin limits procoagulant responses and NETosis and at least partly restores hemostasis control during immunothrombosis. Neutrophils might thus stand as a promising therapeutic target in septic shock-induced coagulopathy.

15.
Sci Rep ; 6: 37953, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27892504

ABSTRACT

Interactions between endothelial selectins and the leukocyte counter-receptor PSGL1 mediates leukocyte recruitment to inflammation sites. PSGL1 is highly sialylated, making it a potential ligand for Siglec-5, a leukocyte-receptor that recognizes sialic acid structures. Binding assays using soluble Siglec-5 variants (sSiglec-5/C4BP and sSiglec-5/Fc) revealed a dose- and calcium-dependent binding to PSGL1. Pre-treatment of PSGL1 with sialidase reduced Siglec-5 binding by 79 ± 4%. In confocal immune-fluorescence assays, we observed that 50% of Peripheral Blood Mononuclear Cells (PBMCs) simultaneously express PSGL1 and Siglec-5. Duolink-proximity ligation analysis demonstrated that PSGL1 and Siglec-5 are in close proximity (<40 nm) in 31 ± 4% of PBMCs. In vitro perfusion assays revealed that leukocyte-rolling over E- and P-selectin was inhibited by sSiglec-5/Fc or sSiglec-5/C4BP, while adhesion onto VCAM1 was unaffected. When applied to healthy mice (0.8 mg/kg), sSiglec-5/C4BP significantly reduced the number of rolling leukocytes under basal conditions (10.9 ± 3.7 versus 23.5 ± 9.3 leukocytes/field/min for sSiglec-5/C4BP-treated and control mice, respectively; p = 0.0093). Moreover, leukocyte recruitment was inhibited over a 5-h observation period in an in vivo model of TNFalpha-induced inflammation following injection sSiglec-5/C4BP (0.8 mg/kg). Our data identify PSGL1 as a ligand for Siglec-5, and soluble Siglec-5 variants appear efficient in blocking PSGL1-mediated leukocyte rolling and the inflammatory response in general.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Inflammation/pathology , Lectins/metabolism , Leukocyte Rolling/physiology , Membrane Glycoproteins/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Antigens, CD/genetics , Antigens, CD/pharmacology , Antigens, Differentiation, Myelomonocytic/genetics , Antigens, Differentiation, Myelomonocytic/pharmacology , Disease Models, Animal , E-Selectin/metabolism , Female , Humans , Inflammation/chemically induced , Inflammation/drug therapy , Lectins/genetics , Lectins/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , P-Selectin/metabolism , Protein Interaction Domains and Motifs , Solubility , Tumor Necrosis Factor-alpha/toxicity
16.
Sci Rep ; 6: 36462, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27876785

ABSTRACT

Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of the tissue type and urokinase type plasminogen activators. High levels of PAI-1 are correlated with an increased risk of thrombotic events and several other pathologies. Despite several compounds with in vitro activity being developed, none of them are currently in clinical use. In this study, we evaluated a novel PAI-1 inhibitor, annonacinone, a natural product from the Annonaceous acetogenins group. Annonacinone was identified in a chromogenic screening assay and was more potent than tiplaxtinin. Annonacinone showed high potency ex vivo on thromboelastography and was able to potentiate the thrombolytic effect of tPA in vivo in a murine model. SDS-PAGE showed that annonacinone inhibited formation of PAI-1/tPA complex via enhancement of the substrate pathway. Mutagenesis and molecular dynamics allowed us to identify annonacinone binding site close to helix D and E and ß-sheets 2A.


Subject(s)
4-Butyrolactone/analogs & derivatives , Fibrinolytic Agents/administration & dosage , Plasminogen Activator Inhibitor 1/metabolism , 4-Butyrolactone/administration & dosage , 4-Butyrolactone/chemistry , 4-Butyrolactone/pharmacology , Animals , Binding Sites , Down-Regulation , Drug Evaluation, Preclinical , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/pharmacology , Humans , Indoleacetic Acids/administration & dosage , Indoleacetic Acids/pharmacology , Mice , Models, Animal , Models, Molecular , Molecular Docking Simulation , Plasminogen Activator Inhibitor 1/chemistry , Plasminogen Activator Inhibitor 1/genetics , Protein Structure, Secondary , Thrombelastography
17.
Thromb Haemost ; 116(3): 452-60, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27412396

ABSTRACT

In the absence of specific antidote to fondaparinux, two modified forms of antithrombin (AT), one recombinant inactive (ri-AT) and the other chemically inactivated (chi-AT), were designed to antagonise AT-mediated anticoagulants, e. g. heparins or fondaparinux. These inactive ATs were previously proven to effectively neutralise anticoagulant activity associated with heparin derivatives in vitro and in vivo, as assessed by direct measurement of anti-FXa activity. This study was undertaken to evaluate in vitro the effectivity of inactive ATs to reverse anticoagulation by heparin derivatives and to compare them with non-specific fondaparinux reversal agents, like recombinant-activated factor VII (rFVIIa) or activated prothrombin-complex concentrate (aPCC), in a thrombin-generation assay (TGA). Addition of fondaparinux (3 µg/ml) to normal plasma inhibited thrombin generation by prolonging lag time (LT) as much as 244 % and lowering endogenous thrombin potential (ETP) to 17 % of their control (normal plasma) values. Fondaparinux-anticoagulant activity was reversed by ri-AT and chi-AT, as reflected by the corrections of LT up to 117 % and 114 % of its control value, and ETP recovery to 78 % and 63 %, respectively. Unlike ri-AT that had no effect on thrombin generation in normal plasma, chi-AT retained anticoagulant activity that minimises its reversal capacity. However, both ATs were more effective than rFVIIa or aPCC at neutralising fondaparinux and, unlike non-specific antidotes, inactive ATs specifically reversed AT-mediated anticoagulant activities, as suggested by their absence of procoagulant activity in anticoagulant-free plasma.


Subject(s)
Antidotes/metabolism , Antithrombins/metabolism , Polysaccharides/antagonists & inhibitors , Thrombin/biosynthesis , Anticoagulants/administration & dosage , Antidotes/analysis , Antithrombins/analysis , Blood Chemical Analysis/methods , Dose-Response Relationship, Drug , Factor VIIa/analysis , Factor VIIa/metabolism , Factor Xa Inhibitors/analysis , Factor Xa Inhibitors/metabolism , Fondaparinux , Hemostatics/analysis , Hemostatics/metabolism , Heparin/administration & dosage , Heparin, Low-Molecular-Weight/antagonists & inhibitors , Humans , In Vitro Techniques , Thrombin/analysis
18.
J Pharm Biomed Anal ; 111: 64-70, 2015.
Article in English | MEDLINE | ID: mdl-25863018

ABSTRACT

With the aim to determine the binding affinity of a new generation of recombinant antithrombin (AT) toward heparin, we developed a dynamic equilibrium-affinity capillary electrophoresis (DE-ACE) method. This method allows the determination of an AT-heparin binding constant (Kd) directly from the cell culture supernatant used to produce the AT variants. Eight measurements per AT variant are sufficient to determine an accurate Kd (uncertainty ≤ 22%, regression coefficient ≥ 0.97), which is not significantly different from the value obtained from a higher number of measurements. Due to the relatively short time required to determine the Kd of one AT variant (2h), this method has the potential for being a low throughput screening method. The method was validated by analyzing five AT variants, whose Kd have been reported in the literature using fluorescence spectroscopy. Finally, the method was applied to estimate the Kd of one new AT variant and one AT conformer, a latent form, that exhibits a significant loss of affinity.


Subject(s)
Antithrombins/chemistry , Heparin/chemistry , Cell Culture Techniques/methods , Electrophoresis, Capillary/methods , Humans , Kinetics , Spectrometry, Fluorescence/methods
19.
J Control Release ; 194: 323-31, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25127657

ABSTRACT

Fondaparinux (Fpx) is the anticoagulant of choice in the treatment of short- and medium-term thromboembolic disease. To overcome the low oral bioavailability of Fpx, a new nanoparticulate carrier has been developed. The nanoparticles (NPs) contain squalenyl derivatives, known for their excellent oral bioavailability. They spontaneously self-assemble upon both electrostatic and hydrophobic interactions between the polyanionic Fpx and cationic squalenyl (CSq) derivatives. The preparation conditions were optimized to obtain monodisperse, stable NPs with a mean diameter in the range of 150-200 nm. The encapsulation efficiencies were around 80%. Fpx loadings reached 39 wt.%. According to structural and morphological analysis, Fpx and CSq organized in spherical multilamellar ("onion-type") nanoparticles. Furthermore, in vivo studies in rats suggested that Fpx was well absorbed from the orally administered NPs, which totally dissociated when reaching the blood stream, leading to the release of free Fpx. The Fpx:CSq NPs improved the plasmatic concentration of Fpx in a dose-dependent manner. However, the oral bioavailability of these new NPs remained low (around 0.3%) but of note, the Cmax obtained after oral administration of 50mg/kg NPs was close to the prophylactic plasma concentration needed to treat venous thromboembolism. Moreover, the oral bioavailability of Fpx could be dramatically increased up to 9% by including the nanoparticles into gastroresistant capsules. This study opens up new perspectives for the oral administration of Fpx and paves the way towards elaborating squalene-based NPs which self assemble without the need of covalently grafting the drug to Sq.


Subject(s)
Anticoagulants/administration & dosage , Fibrinolytic Agents/administration & dosage , Polysaccharides/administration & dosage , Administration, Oral , Animals , Anticoagulants/pharmacokinetics , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Dose-Response Relationship, Drug , Drug Carriers , Drug Compounding , Drug Stability , Fibrinolytic Agents/pharmacokinetics , Fibrinolytic Agents/pharmacology , Fondaparinux , Injections, Intravenous , Male , Nanoparticles , Particle Size , Polysaccharides/pharmacokinetics , Polysaccharides/pharmacology , Rats , Rats, Sprague-Dawley , Squalene/analogs & derivatives , Squalene/chemistry
20.
Eur J Pharm Biopharm ; 88(1): 275-82, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24835150

ABSTRACT

A new, simple and green method was developed for the manufacturing of heparin nanoassemblies active against the heparan sulfate-dependent viruses HSV-1, HSV-2, HPV-16 and RSV. These nanoassemblies were obtained by the auto-association of O-palmitoyl-heparin and α-cyclodextrin in water. The synthesized O-palmitoyl-heparin derivatives mixed with α-cyclodextrin resulted in the formation of crystalline hexagonal nanoassemblies as observed by transmission electron microscopy. The nanoassembly mean hydrodynamic diameters were modulated from 340 to 659 nm depending on the type and the initial concentration of O-palmitoyl-heparin or α-cyclodextrin. The antiviral activity of the nanoassemblies was not affected by the concentration of the components. However, the method of the synthesis of O-palmitoyl-heparin affected the antiviral activity of the formulations. We showed that reduced antiviral activity is correlated with lower sulfation degree and anticoagulant activity.


Subject(s)
Biomimetics/methods , Heparin/chemistry , Herpesvirus 1, Human/drug effects , Herpesvirus 2, Human/drug effects , Human papillomavirus 16/drug effects , Nanoparticles/chemistry , Respiratory Syncytial Viruses/drug effects , Animals , Anticoagulants/chemistry , Antiviral Agents/chemistry , Cell Line, Tumor , Cell Survival , Chlorocebus aethiops , Crystallization , HEK293 Cells , Humans , Hydrodynamics , Microscopy, Electron, Transmission , Nanotechnology , Swine , Vero Cells , Water/chemistry , alpha-Cyclodextrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...