Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
N Engl J Med ; 371(6): 507-518, 2014 08 07.
Article in English | MEDLINE | ID: mdl-25029335

ABSTRACT

BACKGROUND: The study of autoinflammatory diseases has uncovered mechanisms underlying cytokine dysregulation and inflammation. METHODS: We analyzed the DNA of an index patient with early-onset systemic inflammation, cutaneous vasculopathy, and pulmonary inflammation. We sequenced a candidate gene, TMEM173, encoding the stimulator of interferon genes (STING), in this patient and in five unrelated children with similar clinical phenotypes. Four children were evaluated clinically and immunologically. With the STING ligand cyclic guanosine monophosphate-adenosine monophosphate (cGAMP), we stimulated peripheral-blood mononuclear cells and fibroblasts from patients and controls, as well as commercially obtained endothelial cells, and then assayed transcription of IFNB1, the gene encoding interferon-ß, in the stimulated cells. We analyzed IFNB1 reporter levels in HEK293T cells cotransfected with mutant or nonmutant STING constructs. Mutant STING leads to increased phosphorylation of signal transducer and activator of transcription 1 (STAT1), so we tested the effect of Janus kinase (JAK) inhibitors on STAT1 phosphorylation in lymphocytes from the affected children and controls. RESULTS: We identified three mutations in exon 5 of TMEM173 in the six patients. Elevated transcription of IFNB1 and other gene targets of STING in peripheral-blood mononuclear cells from the patients indicated constitutive activation of the pathway that cannot be further up-regulated with stimulation. On stimulation with cGAMP, fibroblasts from the patients showed increased transcription of IFNB1 but not of the genes encoding interleukin-1 (IL1), interleukin-6 (IL6), or tumor necrosis factor (TNF). HEK293T cells transfected with mutant constructs show elevated IFNB1 reporter levels. STING is expressed in endothelial cells, and exposure of these cells to cGAMP resulted in endothelial activation and apoptosis. Constitutive up-regulation of phosphorylated STAT1 in patients' lymphocytes was reduced by JAK inhibitors. CONCLUSIONS: STING-associated vasculopathy with onset in infancy (SAVI) is an autoinflammatory disease caused by gain-of-function mutations in TMEM173. (Funded by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases; ClinicalTrials.gov number, NCT00059748.).


Subject(s)
Inflammation/genetics , Membrane Proteins/genetics , Mutation , Skin Diseases, Vascular/genetics , Age of Onset , Cytokines/genetics , Cytokines/metabolism , Female , Fibroblasts/metabolism , Genes, Dominant , Humans , Infant , Infant, Newborn , Inflammation/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Janus Kinases/antagonists & inhibitors , Lung Diseases/genetics , Male , Pedigree , Phosphorylation , STAT1 Transcription Factor/metabolism , Sequence Analysis, DNA , Skin Diseases, Vascular/metabolism , Syndrome , Transcription, Genetic , Up-Regulation
2.
AIDS ; 15(15): 1931-40, 2001 Oct 19.
Article in English | MEDLINE | ID: mdl-11600820

ABSTRACT

BACKGROUND: The persistence of HIV-1 within resting memory CD4 T cells constitutes a major obstacle in the control of HIV-1 infection. OBJECTIVE: To examine the expression of HIV-1 in resting memory CD4 T cells, using an in-vitro model. DESIGN AND METHODS: Phytohaemagglutinin-activated peripheral blood mononuclear cells were challenged with T cell-tropic and macrophage-tropic HIV-1 clones, and with a replication-incompetent and non-cytotoxic HIV-1-derived vector (HDV) pseudotyped by the vesicular stomatitis virus glycoprotein G. To obtain resting memory CD4 T cells containing HIV-1 provirus, residual CD25(+), CD69(+) and HLA-DR(+) cells were immunodepleted after a 3 week cultivation period. RESULTS: In spite of the resting phenotype, the majority of provirus-harbouring T cells expressed HIV-1 genomes and produced infectious virus into cell-free supernatant. The expression of HDV dropped by only 30% during the return of activated HDV-challenged cells into the quiescent phase. Although resting memory T cells generated in vitro expressed HIV-1 and HDV genome when infected during the course of the preceding T cell activation, they were resistant to HIV-1 and HDV challenge de novo. The infected culture of resting memory T cells showed a higher resistance to the cytotoxic effects of HIV-1 in comparison with the same cultures after reactivation by phytohaemagglutinin. CONCLUSION: The majority of resting memory T cells infected during the course of a preceding cell activation produces virus persistently, without establishing a true HIV-1 latency. The described system could be used as a model for testing new drugs able to control residual HIV-1 replication in resting memory T cells.


Subject(s)
CD4-Positive T-Lymphocytes/virology , HIV Infections/virology , HIV-1/physiology , Cells, Cultured , Genetic Vectors , HIV-1/genetics , HIV-1/pathogenicity , Humans , Immunologic Memory , Lymphocyte Activation , Virus Latency , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...