Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res Commun ; 47(3): 1357-1368, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36823482

ABSTRACT

Lactic acid bacteria (LAB) are an important option for Salmonella control in animal production, resulting in lower antibiotic use. The objective of this research was to isolate LAB from meat products and from commercial probiotics sold as nutritional supplements for in vitro verification of their bioprotective potential. Eleven bacteria were identified as Pediococcus acidilactici, two as Lacticaseibacillus rhamnosus, one as Lacticaseibacillus paracasei paracasei, one as Limosilactobacillus fermentum, and one as a consortium of Lactobacillus delbrueckii bulgaricus and L. fermentum. All bacteria showed inhibitory activity against Salmonella, with emphasis on the inhibition of P. acidilactici PUCPR 011 against Salmonella Enteritidis 33SUSUP, S. Enteritidis 9SUSP, S. Enteritidis 56301, S. Enteritidis CRIFS 1016, Salmonella Typhimurium ATCC™ 14,028®, and Salmonella Gallinarum AL 1138, with inhibition halos of 7.3 ± 0.5 mm, 7.7 ± 1.0 mm, 9.0 ± 1.8 mm, 7.3 ± 0.5 mm, 7.7 ± 1.0 mm, and 7.3 ± 0.5, respectively. The isolates P. acidilactici PUCPR 011, P. acidilactici PUCPR 012, P. acidilactici PUCPR 014, L. fermentum PUCPR 005, L. paracasei paracasei PUCPR 013, and L. rhamnosus PUCPR 010 showed inhibition greater than 2 mm against at least 3 Salmonella and were used for encapsulation and in vitro digestion. The encapsulation efficiency ranged from 76.89 ± 1.54 to 116.48 ± 2.23%, and the population after 12 months of storage was from 5.31 ± 0.17 to 9.46 ± 0.09 log CFU/g. When simulating swine and chicken digestion, there was a large reduction in bacterial viability, stabilizing at concentrations close to 2.5 log CFU/mL after the analyses. The analyzed bacteria showed strong in vitro bioprotective potential; further analyses are required to determine in vivo effectiveness.


Subject(s)
Lactobacillales , Animals , Swine , Lactobacillales/physiology , Anti-Bacterial Agents/pharmacology , Chickens , Salmonella typhimurium
2.
Microbiology (Reading) ; 167(11)2021 11.
Article in English | MEDLINE | ID: mdl-34738887

ABSTRACT

The genus Salmonella is closely associated with foodborne outbreaks and animal diseases, and reports of antimicrobial resistance in Salmonella species are frequent. Several alternatives have been developed to control this pathogen, such as cell-free supernatants (CFS). Our objective here was to evaluate the use of lactic acid bacteria (LAB) CFS against Salmonella in vitro. Seventeen strains of LAB were used to produce CFS, and their antimicrobial activity was screened towards six strains of Salmonella. In addition, CFS were also pH-neutralized and/or boiled. Those with the best results were lyophilized. MICs of lyophilized CFS were 11.25-22.5 g l-1. Freeze-dried CFS were also used to supplement swine and poultry feed (11.25 g kg-1) and in vitro simulated digestion of both species was performed, with Salmonella contamination of 5×106 and 2×105 c.f.u. g-1 of swine and poultry feed, respectively. In the antimicrobial screening, all acidic CFS were able to inhibit the growth of Salmonella. After pH neutralization, Lactobacillus acidophilus Llorente, Limosilactobacillus fermentum CCT 1629, Lactiplantibacillus plantarum PUCPR44, Limosilactobacillus reuteri BioGaia, Lacticaseibacillus rhamnosus ATCC 7469 and Pediococcus pentosaceus UM116 CFS were the only strains that partially maintained their antimicrobial activity and, therefore, were chosen for lyophilization. In the simulated swine digestion, Salmonella counts were reduced ≥1.78 log c.f.u. g-1 in the digesta containing either of the CFS. In the chicken simulation, a significant reduction was obtained with all CFS used (average reduction of 0.59±0.01 log c.f.u. ml-1). In general, the lyophilized CFS of L. fermentum CCT 1629, L. rhamnosus ATCC 7469 and L. acidophilus Llorente presented better antimicrobial activity. In conclusion, CFS show potential as feed additives to control Salmonella in animal production and may be an alternative to the use of antibiotics, minimizing problems related to antimicrobial resistance.


Subject(s)
Lactobacillales , Probiotics , Salmonella Infections, Animal , Animals , Lactobacillus , Probiotics/pharmacology , Salmonella , Salmonella Infections, Animal/microbiology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...