Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 161: 63-72, 2016 08.
Article in English | MEDLINE | ID: mdl-27221949

ABSTRACT

In this work we investigate the presence of divalent cations bound to the Glossoscolex paulistus (HbGp) hemoglobin and their effect over the protein stability and the peroxidase (POD) activity. Atomic absorption studies show that the HbGp iron content is consistent with the presence of 144 ions per protein. Moreover, using iron as a reference, the content of calcium was estimated as 30±4 ions per protein, independently of the EDTA pre-treatment or not prior to the acidic treatment performed in the protein digestion. The zinc content was 14±2 ions in the absence of EDTA pre-treatment, and 3±1 ions per protein in the presence of EDTA pre-treatment, implying the presence of one zinc ion per protomer (1/12 of the whole molecule). Finally, the copper concentration is negligible. Different from the vertebrate hemoglobins, where the effectors are usually organic anions, the hexagonal bilayer hemoglobins have as effectors inorganic cations that increase the oxygen affinity and stabilize the structure. Previous studies have suggested that the presence of divalent cations, such as copper and zinc, is related to the different types of antioxidant enzymatic activities as the superoxide dismutase (SOD) activity shown by giant hemoglobin from Lumbricus terrestris (HbLt). Recently, studies on HbGp crystal structure have confirmed the presence of Zn(2+) and Ca(2+) binding sites. The Ca(2+) sites are similar as observed in the HbLt crystal structure. Otherwise, the Zn(2+) sites have no relation with those observed in Cu/Zn SODs. Our peroxidase assays with guaiacol confirm the POD activity and the effect of the zinc ions for HbGp. Our present results on HbGp metal content and their stability effects is the first step to understand the role of these cations in HbGp function in the future.


Subject(s)
Calcium/chemistry , Hemoglobins/chemistry , Oligochaeta/chemistry , Peroxidase/chemistry , Zinc/chemistry , Animals , Calcium/metabolism , Hemoglobins/metabolism , Oligochaeta/metabolism , Peroxidase/metabolism , Protein Stability , Zinc/metabolism
2.
Article in English | MEDLINE | ID: mdl-24095792

ABSTRACT

Rhinodrilus alatus is an annelid and its giant extracellular hemoglobin (HbRa) has a molecular mass (MM) of 3500kDa. In the current study, the characterization of MM values of the HbRa subunits, and the effects of surfactants and alkaline pH upon HbRa stability were monitored. Electrophoresis, MALDI-TOF-MS and AUC show that the MM values of HbRa subunits are very close, but not identical to the Glossoscolex paulistus hemoglobin (HbGp). The monomer d is found to exist in, at least, two isoforms: the main one, d1, displays a MM of 16,166±16Da, and the second one, d2, is less intense with MM of 16,490±20Da. For the trimer abc and tetramer abcd, single contributions around 51,470Da and 67,690Da were observed, respectively. Finally, the monomers a, b, and c, present MM values of 17,133, 17,290 and 15,506Da, respectively. Both CTAC and DTAB interact strongly with HbRa, and up to seven surfactant molecules are bound to the protein. On the other hand, spectroscopic studies show that HbRa is more stable at alkaline pH, as compared to HbGp. Thus, our data suggest that alkaline medium, up to pH10.0, induces the oligomeric dissociation, without promoting the subunits unfolding and heme iron oxidation. Our results suggest that the MM of the annelid hemoglobin subunits is conserved to a great extent in the evolution process of these species.


Subject(s)
Bis-Trimethylammonium Compounds/metabolism , Hemoglobins/metabolism , Oligochaeta , Protein Subunits/metabolism , Quaternary Ammonium Compounds/metabolism , Surface-Active Agents/metabolism , Animals , Hemoglobins/chemistry , Hydrogen-Ion Concentration , Oxyhemoglobins/chemistry , Oxyhemoglobins/metabolism , Protein Binding , Protein Stability , Protein Structure, Quaternary , Protein Subunits/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...