Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 351(6269): 158-62, 2016 Jan 08.
Article in English | MEDLINE | ID: mdl-26657285

ABSTRACT

Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.


Subject(s)
Bacteria/metabolism , Cadaver , Fungi/metabolism , Microbial Consortia , Soil Microbiology , Animals , Bacteria/classification , Biodegradation, Environmental , Ecosystem , Fungi/classification , Mice , Nitrogen Cycle , Soil/chemistry , Soil/classification
2.
Forensic Sci Med Pathol ; 11(2): 202-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25737335

ABSTRACT

Body-associated microbes were recently shown to change significantly during decomposition, undergoing an ecological succession in experimental conditions using rodent and swine models. We investigated microbial succession in soils associated with swine carcasses under experimental field conditions in summer and winter. We demonstrate that these postmortem microbial communities change in a specific, reproducible fashion, and that soil microbes represent a significant component of the postmortem microbial community, contrary to widespread belief in forensic science. However, the effects of decomposition on soil microbial communities were different in summer and winter. We suggest that the microbial ecological succession will be useful in medicolegal death investigation; however, observations in winter might not be applicable to summer, which indicates a need for a greater understanding of the seasonality of decomposition.


Subject(s)
Postmortem Changes , Seasons , Soil Microbiology , Animals , Forensic Pathology , Models, Animal , Swine , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...