Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Med Entomol ; 61(4): 1001-1008, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38767975

ABSTRACT

Propylene glycol (PG) demonstrates greater efficacy than other sugar polyols. However, the attributes it confers for toxicity and possible co-formulation with other ingredients are unknown. To evaluate this, α-glucosidase and glucose oxidase reactions were performed in Aedes aegypti (L.) (Diptera: Culicidae) to categorize if PG behaves similarly to prior studied sugar alcohols. A combination of no-choice and choice assays was used to determine effective ratios of PG and sucrose, competitiveness against a control of 10% sucrose, and whether mosquitoes recovered from PG consumption. The final trials included ß-cyclodextrin encapsulated cinnamon leaf oil, clove stem oil, patchouli oil, garlic oil, cedarwood oil, and papaya seed oil formulated with 5% sucrose + 5% PG. PG functioned as a linear competitive inhibitor of α-glucosidase. The efficacy of PG was synergized by co-ingestion with equivalent ratios of sucrose. Unlike the high diuretic response to other sugar alcohols, PG resulted in diminished excretion regardless of being co-formulated with sucrose or terpenoids. PG is not especially competitive against unadulterated sugar meals but is likewise not clearly repellent. Although mosquitoes did not recover from ingestion of the glycol meals, there was no indication that mortality would continue to accumulate once the treatments were removed. Of the terpenoids tested, cinnamon and patchouli caused ~50% or less mortality; garlic, cedarwood, and clove caused 80-90% mortality; and papaya seed caused 100% mortality, exceeding all other test groups and the formulation blank. PG is a useful supporting ingredient in attractive toxic sugar bait formulations with flexibility in formulation.


Subject(s)
Aedes , Propylene Glycol , Terpenes , Animals , Aedes/drug effects , Terpenes/chemistry , Terpenes/pharmacology , Propylene Glycol/chemistry , Mosquito Control , Sucrose/chemistry , Insecticides/chemistry , Female , Glucose/chemistry
2.
J Am Mosq Control Assoc ; 40(2): 121-124, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38660965

ABSTRACT

The Salt Lake City Mosquito Abatement District (SLCMAD) detected a 20,000-fold resistance to Lysinibacillus sphaericus (Lsph) in Culex pipiens occurring in catch basins of Salt Lake City during 2016. In response, SLCMAD suspended use of Lsph and rotated use of spinosyn and s-methoprene products for the next three years. At the end of the third year, Lsph was evaluated again and efficacy similar to susceptible colony strains. During the second year of Lsph use, technicians observed lack of control of larvae at some urban sites. Bioassays performed during 2021 showed recurrence of some resistance to Lsph to varying degrees across SLCMAD urban areas. The rapidity with which resistant phenotypes reemerged clarifies that SLCMAD cannot in the near future rely on repeated use of Lsph, even after suspending use for three years and using within-season product rotations. Prior reports in other research groups have found long-term selection to Lsph, as is the case at SLCMAD, to not regress in spite of halting use of the products. However, our findings offer some optimism that regression may be relatively quick. More operational review is needed, and future work should characterize resistance alleles in field populations. Collectively, there is a lack of concrete data supporting the prevailing assumptions from adjacent industries that were adopted into mosquito abatement. We provide this short note as additional guidance for mosquito and vector control districts weighing options to remediate Lsph resistance.


Subject(s)
Bacillaceae , Culex , Larva , Mosquito Control , Animals , Utah , Larva/growth & development , Macrolides , Methoprene , Insecticides , Drug Combinations
3.
J Med Entomol ; 61(3): 802-807, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38430931

ABSTRACT

The New Jersey Light Trap has been among the earliest trap models used for mosquito surveillance in the United States. This trap was modernized in the 1950s to the miniature CDC light trap, with the addition of CO2 following soon after. The incandescent light has the tendency to attract nontarget insects, as well as losing a substantial portion of their energy as heat. Few studies have delineated whether heat or light in isolation make a difference in field collections using the former traps within the United States. Our study focused on isolating heat and light variables by using incandescent bulbs, light emitting diode (LED) bulbs, and electric heating patches affixed to a base model CO2 trap as designed at the Salt Lake City Mosquito Abatement District. Sites were selected in the urban and suburban foothills and canyons of the Wasatch Mountain front, industrial areas near the Salt Lake City International Airport, and rural wetlands in the marshes outlying the Great Salt Lake. Five traps were replicated within each sector during the summer and fall summer seasons. Collections were composed of Aedes dorsalis (Meigen), Culex pipiens L., Culex tarsalis Coquillett, and Culiseta inornata (Williston). Composition changes were a result of seasonal, rather than spatial, shifts. The results showed that LED light traps depressed collections of key species. Otherwise, there were negligible differences in collections among incandescent, heat film, and base model traps. In the Intermountain West, the miniature CDC trap is reliable enough to make programmatic decisions even if light usage varies by district.


Subject(s)
Carbon Dioxide , Culicidae , Hot Temperature , Light , Mosquito Control , Animals , Mosquito Control/methods
4.
J Am Mosq Control Assoc ; 40(1): 11-19, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38323640

ABSTRACT

Aedes aegypti is an anthropophilic mosquito that vectors dengue, chikungunya, Zika, and yellow fever viruses. The US Center for Disease Control and Prevention (CDC)'s autocidal gravid ovitraps (AGOs) may facilitate the control of container-inhabiting Aedes mosquitoes and curb arbovirus outbreaks by taking advantage of oviposition-seeking behavior using pesticide-free technology. The AGOs, manufactured by SpringStar Inc., were tested during the summer of 2018 in St. Augustine, FL. A total of 1,718 AGOs were deployed for study in 3 different 40-acre (∼18.2 ha) plots at a density of 5-7 AGOs per house and a coverage of >90% for all AGO test sites. The AGOs were modified using tap water instead of infusion water to reduce the capture of nontarget organisms. Each intervention and reference area was monitored weekly using BioGents Sentinel traps and Sentinel AGOs. Generalized linear mixed models showed that changes to Aedes mosquito populations were more seasonal than treatment driven. Homeowners expressed positivity about traps and believed the traps were both effective and had directly contributed to increased quality of life.


Subject(s)
Aedes , Zika Virus Infection , Zika Virus , Animals , Female , Florida , Quality of Life , Mosquito Vectors , Water
5.
J Med Entomol ; 61(3): 678-685, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38366896

ABSTRACT

Volatile pyrethroids are effective in reducing mosquito populations and repelling vectors away from hosts. However, many gaps in knowledge exist for the sublethal impacts of volatile pyrethroids on mosquitoes. To that end, transfluthrin exposures were conducted on a field strain of Aedes albopictus (Skuse) held as a laboratory colony. Dose-response analysis was conducted on both sexes at either 1-4 days old or 5-10 days old. Resultant concentration data were used to evaluate the LC20 and LC50 values in various mate pairings of treatments and controls in which either the male or female was from a selectively treated group and mated with a counterpart that was treated independently. Blood feeding proportion, delayed mortality after a 24-h recovery period, egg collection totals, and F1 larval survival were determined following transfluthrin treatment in the F0, but outcomes were not significant. In contrast, sterility was predicated on male treatment, with treated females resulting in higher overall egg viability. Treated males in the mating pair resulted in significantly lower egg viability and accelerated larval hatch in the F1. Additionally, the presence of sperm in female spermathecae was significantly diminished in test groups containing treated male mosquitoes. Male sublethal effects may be a critical determinant of a mixed population's reproductive success.


Subject(s)
Aedes , Cyclopropanes , Fertility , Fluorobenzenes , Insecticides , Animals , Aedes/drug effects , Male , Cyclopropanes/pharmacology , Female , Insecticides/pharmacology , Fertility/drug effects , Fluorobenzenes/pharmacology , Mosquito Control
6.
Article in English | MEDLINE | ID: mdl-38299225

ABSTRACT

Aedes aegypti is an anthropophilic mosquito that vectors dengue, chikungunya, Zika, and yellow fever viruses. The US Center for Disease Control and Prevention (CDC)'s autocidal gravid ovitraps (AGOs) may facilitate the control of container-inhabiting Aedes mosquitoes and curb arbovirus outbreaks by taking advantage of oviposition-seeking behavior using pesticide-free technology. The AGOs, manufactured by SpringStar Inc., were tested during the summer of 2018 in St. Augustine, FL. A total of 1,718 AGOs were deployed for study in 3 different 40-acre (∼18.2 ha) plots at a density of 5-7 AGOs per house and a coverage of >90% for all AGO test sites. The AGOs were modified using tap water instead of infusion water to reduce the capture of nontarget organisms. Each intervention and reference area was monitored weekly using BioGents Sentinel traps and Sentinel AGOs. Generalized linear mixed models showed that changes to Aedes mosquito populations were more seasonal than treatment driven. Homeowners expressed positivity about traps and believed the traps were both effective and had directly contributed to increased quality of life.

7.
Parasit Vectors ; 17(1): 76, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378683

ABSTRACT

BACKGROUND: Sugar alcohols, such as erythritol, are low-impact candidates for attractive toxic sugar baits (ATSB) to kill mosquitoes. To determine whether erythritol has a viable future in ATSB formulations, a suite of assays was conducted to diagnose toxicity mechanisms and starvation effects on mortality in Aedes aegypti (L.) as a model system. METHODS: We measured general carbohydrate load, glucosidase levels, and free glucose in intoxicated adult mosquitoes to observe whether sugar digestion was impaired. We assayed the effects of sugar combinations with erythritol on larvae and adults. To measure erythritol effects when mosquitoes were not resource-deprived, additional assays manipulated the prior starvation status. RESULTS: Up to 50,000 ppm of erythritol in water had no effect on larvae within 72 h, but an ammonia spike indicated diuresis in larvae as early as 4 h (F8,44 = 22.50, P < 0.0001) after sucrose/erythritol combinations were added. Adult consumption of erythritol was diuretic regardless of the sugar pairing, while sucrose and erythritol together generated above 80% mortality (F2,273 = 33.30, P < 0.0001) alongside triple the normal excretion (F5,78 = 26.80, P < 0.0004). Glucose and fructose paired individually with erythritol had less mortality, but still double the fecal excretion. When ingesting erythritol-laced meals, less sugar was detected in mosquitoes as compared to after sucrose meals (χ2 = 12.54, df = 1, P = 0.0004). CONCLUSIONS: Data showed that erythritol is a linear competitive inhibitor of α-glucosidase, marking it as a novel class of insecticide in the current research climate. However, the efficacy on larvae was null and not persistent in adult mosquitoes when compared across various starvation levels. Despite significant diuresis, the combined effects from erythritol are not acute enough for vector control programs considering ATSB against mosquitoes.


Subject(s)
Aedes , Insecticides , Animals , Aedes/physiology , alpha-Glucosidases , Erythritol/pharmacology , Mosquito Control , Mosquito Vectors , Sugars , Carbohydrates , Sucrose/pharmacology , Insecticides/pharmacology , Larva , Glucose , Diuresis
8.
Environ Entomol ; 53(1): 77-84, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38170874

ABSTRACT

The western tree hole mosquito, Aedes sierrensis (Ludlow) (Diptera: Clucidae), is a pestiferous mosquito with a range extending over the entire pacific seaboard and into portions of the intermountain west. As a peridomestic heartworm vector, it demands at least some level of surveillance to understand its abundance. However, the species is refractory to a majority of conventional vector surveillance approaches for tracking mosquitoes. To find more options for Aedes sierrensis surveillance, a variety of oviposition attractants were evaluated in arena-style choice assays using colony reared adults. A range of infusion treatments (e.g., alfalfa, oak, and beetroot) were examined and then combined with investigations of liquid color as well as ovicup color and entryway position. These studies revealed that Ae. sierrensis have an affinity for purple coloration, plain water, and larger entryway sizes for oviposition cups. A prototype ovicup was 3D-printed using purple filament and multiple types of entryways, and used to re-test infusion waters. No particular attraction differences were detected after normalizing for purple color. Comparisons to black 3D-printed cups yielded surprising observations that male mosquitoes also aggregated on purple cups while females sheltered, but not necessarily oviposited, in black cups. Although this was only a laboratory-based assessment, these studies provide useful information for future field trials of potential oviposition traps for surveillance of Ae. sierrensis.


Subject(s)
Aedes , Female , Animals , Oviposition , Mosquito Vectors , Rain , Water
9.
PLoS Negl Trop Dis ; 18(1): e0011899, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38198453

ABSTRACT

The central component of mosquito and vector surveillance programs globally is the adult mosquito trap, which is intended to collect host-seeking mosquitoes. The miniature CDC trap is a widely distributed trap style in part due to its relative affordability and compact nature. Despite already being a simple trap, in-house production methods, such as 3D printing, could improve the accessibility of the CDC trap by eliminating some of the supply chain variables. We present here several trials with the Salt Lake City (SLC) trap, a three-dimensional (3D) printed trap design. Functional assessments were made on secondary components and found no statistically significant differences when comparing CO2 line height (above vs. below fan), battery types (sealed lead acid vs. USB battery pack), and trap body collection shape (funnel body vs. simple/straight body). The SLC trap was compared directly to a commercial equivalent, the ABC trap, with comparative assessment on species diversity and evenness in collections and found to be statistically equivalent on all metrics. Methods also detail an accompanying optional transport system for a pressurized CO2/regulator set-up, should a practitioner elect not to use dry ice. Our final design is presented here with the publicly published stereolithography (STL) files and a detailed outline of the transport container system. Alternative models are available for in-house manufacture of mosquito traps, and we contribute these designs in an effort to stimulate further growth in vector surveillance.


Subject(s)
Culicidae , Animals , United States , Carbon Dioxide , Mosquito Vectors , Centers for Disease Control and Prevention, U.S. , Mosquito Control/methods
10.
J Am Mosq Control Assoc ; 39(4): 231-235, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38108427

ABSTRACT

Gravid traps have become a common and frequently essential surveillance tool for parous Culex spp. vectors of West Nile virus and other encephalitis-causing pathogens. The recent closing of BioQuip Products Inc., an entomological supply company, has jeopardized the commercial availability of gravid traps. The Salt Lake City Mosquito Abatement District presents herein a template for making your own gravid trap, but with some modernizations for quieter fans and longer lasting, light weight, lithium battery packs. At the time of writing, the materials cost for the fan ($14 USD), toolbox ($13), cables ($9), ABS pipe ($2.50), aluminum brackets ($10), catch container with lid ($9), trap net ($10), USB battery pack ($35) and the negligible amount of 3D-printed filament ($2), is approximately half the cost (not including labor) of the formerly available commercial model. Additionally, performance validation in the laboratory (t4,9 = 0.1191, P < 0.9109) and within two field sites (χ2 = 0.107, P < 0.744) demonstrated no significant differences in collections of gravid Culex pipiens. We do not present an overhaul of the previous gravid trap blueprint, but the quality-of-life updates to the trap design, the feasibility of in-house manufacture, and the mirrored collection efficacy to the commercial model can allow improved maintenance of gravid trap surveillance networks without a commercial supplier.


Subject(s)
Culex , Culicidae , Animals , Mosquito Vectors , Lakes
11.
J Am Mosq Control Assoc ; 39(3): 192-199, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37665399

ABSTRACT

The Salt Lake City Mosquito Abatement District (SLCMAD) has been conducting aerial applications using an organophosphate insecticide against adult mosquitoes for several decades. In order to evaluate a potential rotation product, aerial applications of Duet HD™, a pyrethroid, were conducted under operational conditions against wild populations of Aedes dorsalis and Culex tarsalis and against colony strains of Cx. pipiens and Cx. quinquefasciatus. The erratic wind patterns of the greater Salt Lake area did not prevent sufficient droplet deposition flux at 9 monitoring locations spread across a 5,120-acre (2,072 ha) spray block within rural habitats. Three separate aerial application trials showed great efficacy against Ae. dorsalis. In contrast, Cx. tarsalis exhibited inconsistent treatment-associated mortalities, suggesting the presence of less susceptible or resistant field populations as a result of spillover from agricultural or residential pyrethroid usage. Bottle bioassays to diagnose pyrethroid resistance using field-collected Cx. tarsalis indicated that some populations of this species, especially those closest to urban edges, failed to show adequate mortality in resistance assays. Despite challenging weather conditions, Duet HD worked reasonably well against susceptible mosquito species, and it may provide a crucial role as an alternative for organophosphate applications within specific and sensitive areas. However, its area-wide adoption into control applications by the SLCMAD could be problematic due to reduced impacts on the most important arboviral vector species, Cx. tarsalis, in this area. This study demonstrates the importance of testing mosquito control products under different operational environments and against potentially resistant mosquito populations by municipal mosquito control districts.

12.
J Insect Sci ; 23(4)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37565771

ABSTRACT

Tools for rearing hematophagous insects, such as mosquitoes (Diptera: Culicidae), in an insectary are essential for research and operational evaluations in vector biology and control. There is an abundance of low-cost options for practitioners without conventional infrastructure. However, few midrange options exist that provide a balance of efficiency and low material waste. We present here a reproducible design for an electrically powered blood-feeding device that offers long-term reusability, low material waste, and customizability for different species or experiments. The limitation is the requirement for electricity, but the gain is a simple, low-skill device that can be modified as needed. To validate the design, assessments of feeding angle and blood-feeding success were compared between the Salt Lake City Mosquito Abatement District artificial membrane feeder (SLAM) and a commercial system (Hemotek). Engorgement in Aedes aegypti (80-90%), Culex pipiens (50-80%), and Culex tarsalis (30-75%) was similar between the 2 units, resulting in nearly identical fecundity outcomes between devices. Additionally, 45° angles were more successful, generally, than presenting the feeders flat or vertical to the mosquitoes (df3,48, P = 1.014 × 10-15). This angle is simple to present with the SLAM device. Materials for in-house reproduction of the SLAM system are now widely available in regions with access to e-commerce and shipped goods. This results in a device schematic that should fit well into a relatively modular, do-it-yourself paradigm where the practitioner needs only to assemble some materials without complex engineering. This article provides schematics, cost comparison, and validation of the in-house-made SLAM system.

13.
J Med Entomol ; 60(4): 833-836, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37080712

ABSTRACT

Attractive toxic sugar baits (ATSBs) are an underexploited method for mosquito control. For ATSBs to be more widely accepted, demonstrably effective ingredients need to be verified. We investigated erythritol as a toxic additive in sugar meals against Aedes aegypti (L.) for potential future use in ATSBs. Erythritol is a sugar alcohol that is commonly used as a sugar substitute, while also being toxic to mosquitoes. Our studies tested formulations of erythritol, sucrose, and blends of both. Secondary investigations included combinations with the active ingredients Bacillus thuringiensis israelensis, spinosyn, and boric acid. Adult Ae. aegypti were separated into test groups and provided various combinations. Formulations containing erythritol, with or without another toxicant, exhibited 90% mortality within 72 h of observation (P = 0.03192). Additionally, erythritol appeared more effective when combined with sucrose in a 1:1 ratio (5% concentration each). This combination showed a 24% and 85% increase in mortality when combined with boric acid and Bti, respectively, at 48 h compared with equivalent groups containing only 10% sucrose. Erythritol appears to kill adult mosquitoes, even in relatively low concentrations, without another toxicant being required. However, erythritol also effectively enhances kill of main ingredient toxicants such as boric acid and Bti, showing a supporting role. The low concentration of erythritol needed to provide significant kill, its ability to fill in as both a sugar base and toxicant, and its ability to be safely handled by humans makes erythritol a strong candidate for use as a supporting ingredient in future bait formulations.


Subject(s)
Aedes , Insecticides , Humans , Animals , Sugars , Erythritol , Mosquito Control/methods , Sucrose
14.
J Econ Entomol ; 114(2): 928-936, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33503251

ABSTRACT

Field development for optimizing the use patterns of spatial repellents are an ongoing research need. To investigate volatile pyrethroids in blends containing multiple active ingredients, metofluthrin was formulated into a vegetation spray for application to foliage and mosquito harborage. Metofluthrin was compared by itself and in combination with Sector (permethrin), Hyperion (sumithrin), Onslaught Fast Cap (s-fenvalerate, prallethrin), and against a benchmark for comparison, OneGuard (λ-cyhalothrin, prallethrin, pyriproxyfen). Field sites with established Aedes albopictus (Skuse) (Diptera: Culicidae) populations were allocated as control and treatment and surveilled with both adult traps and oviposition cups before and after treatment. Adult mosquito reductions were consistently higher over 4 wk in the combination treatments and were comparable to OneGuard. In contrast, efficacy provided by metofluthrin alone or the standalone existing product (Sector, Hyperion, Onslaught) by were consistently less effective than OneGuard and the comparative blends. Additionally, poorly melanized and collapsing eggs were identified from mosquito adults collected at treated field sites. A 20-50% significant decrease in nonviable mosquito eggs, a 50% or more reduction in total eggs and an 80% or more reduction in adult mosquitoes collected at the local field sites was demonstrated across all metofluthrin-containing treatments. Metofluthrin applications both supplemented the adulticidal control of the selected pyrethroid-containing products and provided significant reduction in egg laying frequency and viability during monitoring of areas adjacent to the treated vegetation. Metofluthrin, and possibly other volatile ingredients, appears to have complex interactions for mosquito control in the field and could be unique as a supporting ingredient to other insecticides.


Subject(s)
Aedes , Insecticides , Animals , Cyclopropanes/pharmacology , Female , Fluorobenzenes/pharmacology , Mosquito Control
15.
J Vector Ecol ; 46(1): 30-33, 2021 06.
Article in English | MEDLINE | ID: mdl-35229579

ABSTRACT

Attractive toxic sugar baits (ATSB) are a novel and effective mosquito control tool based on sugar-feeding behaviors and oral ingestion. In general, there is a demand from consumers for more novel control products with more effective active ingredients. Bacillus thuringiensis israelensis (BTi) is a major larvicide for control of mosquito larvae. This study evaluated BTi as an active ingredient of toxic sugar baits (TSB) against adult Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus, compared with a positive control of 1% boric acid toxic sugar bait. Ingestion of BTi TSB by female mosquitoes resulted in an average mortality at 48 h of 97% for Ae. aegypti, 98% for Ae. albopictus, and 100% for Cx. quinquefasciatus. The study findings suggest ingestible BTi TSBs could be a viable alternative to current mosquito control strategies and programs against adults of these three species of mosquitoes.


Subject(s)
Aedes , Bacillus thuringiensis , Culex , Animals , Female , Mosquito Control/methods , Sugars
17.
Environ Entomol ; 49(2): 435-443, 2020 04 14.
Article in English | MEDLINE | ID: mdl-31958123

ABSTRACT

Spatial repellent studies have demonstrated that volatile pyrethroids reduce human contact with mosquitoes, but field trials targeting the volatile qualities of spatial repellent pyrethroids for integrated pest management are lacking. To investigate the stability and utility of volatile pyrethroids in mosquito management, metofluthrin was formulated into a vegetation spray intended for use on foliage and mosquito harborage. A comparative field evaluation was conducted between Onslaught Fast Cap, the experimental metofluthrin formulation, and a blended treatment of Onslaught Fast Cap and metofluthrin. Environmental fate of the metofluthrin formulation was estimated using aging bioassays to stress the formulated product, while leaf samples were taken from the treated field sites to bioassay against Aedes albopictus (Skuse) and determine a comparative rate of decay. The combined data from the aging bioassays and leaf samples allow inference that the experimental formulation lasts 2-3 wk in most lighting and humidity conditions at ~26.6 ±â€…1°C. However, regular rainfall jeopardizes continued efficacy. In comparative field efficacy, adult mosquito reductions were comparable between the two products. Onslaught Fast Cap reduced eggs collected in the immediate vicinity by 80-90% but had no effect in adjacent areas. Metofluthrin treatments resulted in a 50-90% reduction of eggs collected for 4 wk up to 60 m away from treated vegetation. However, the blended treatment using metofluthrin as an additive to Onslaught Fast Cap provided ≥80% control of Ae. albopictus adults and eggs, proximal and adjacent to treated areas, for the study duration. Metofluthrin has a great potential as a supporting ingredient to other insecticides.


Subject(s)
Aedes , Insecticides , Animals , Cyclopropanes , Fluorobenzenes , Humans , Mosquito Control , Ovum
18.
J Med Entomol ; 57(1): 17-24, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31586442

ABSTRACT

Testing behavioral response to insecticidal volatiles requires modifications to the existing designs of olfactometers. To create a testing apparatus in which there is no chemical memory to confound tests, we detail the technical aspects of a new tool with design influences from other olfactometry tools. In addition, this new tool was used to evaluate a novel formulation of metofluthrin for use as an outdoor residual treatment. After sourcing materials to prioritize glass and metal construction, a modular wind tunnel was developed that hybridizes wind tunnel and olfactometer specifications. Volatile contaminants were removed by strong ultraviolet light within the chamber before and between trials. Repellent trials were conducted with an experimental formulation of metofluthrin and a commercial formulation of esfenvalerate, prallethrin, and piperonyl butoxide (Onslaught Fast Cap) against Aedes albopictus (Skuse). Toxicant vapors were delivered with attractants from a lure with behavioral responses scored 20 min post-exposure. Upwind attraction to the attractant lure and the Onslaught Fast Cap plus lure resulted in 90 and 75% capture, respectively. In contrast, metofluthrin vapors resulted in less than 10% attraction, while also causing repellency, disorientation, knockdown, and mortality effects. Our findings demonstrated that an inert modular wind tunnel was functional for mitigating toxic secondary exposures of spatial repellents amidst complex behavioral analysis in mosquitoes. The resulting observations with formulated metofluthrin positively reinforce the merit of transitioning metofluthrin into expanded roles in mosquito management.


Subject(s)
Aedes , Chemotaxis , Cyclopropanes , Fluorobenzenes , Insecticides , Aedes/physiology , Animals , Avoidance Learning , Olfactometry
20.
J Med Entomol ; 56(4): 1087-1094, 2019 06 27.
Article in English | MEDLINE | ID: mdl-30989189

ABSTRACT

Spatial repellents can reduce fecundity and interrupt oviposition behavior in Aedes aegypti. Yet, it is unclear if short exposure times, resistant phenotypes, and other aspects of spatial repellents can impact these effects on mosquito reproduction. To address these issues, pyrethroid susceptible, pyrethroid resistant, and field strains of Ae. aegypti were used to evaluate the extent to which fecundity and oviposition behavior are affected following metofluthrin exposure. Mosquitoes were exposed for 60 s to a sub-lethal dose (LC30) of metofluthrin before blood feeding and allowed 72 h to become gravid before evaluation in an oviposition bioassay for an additional 72 h. Metofluthrin-exposed susceptible, field, and to a lesser extent resistant strain Ae. aegypti showed oviposition across fewer containers, less egg yield, less egg viability, and reduced larval survivorship in hatched eggs compared to unexposed cohorts. Susceptible mosquitoes retained some eggs at dissection following bioassays, and in one case, melanized eggs retained in the female. Treated resistant and field strain F1 larvae hatched significantly earlier than unexposed cohorts and resulted in increased larval mortality in the first 3 d after oviposition. Upon laying, the treated field strain had incompletely melanized eggs mixed in with viable eggs. The treated field strain also had the lowest survivorship of larvae reared from bioassay eggs. These results indicate that metofluthrin could succeed in reducing mosquito populations via multiple mechanisms besides acute lethality. With the available safety data, pre-existing spatial repellent registration, and possibilities for other outdoor delivery methods, metofluthrin is a strong candidate for transition into broader mosquito abatement operations.


Subject(s)
Aedes/drug effects , Cyclopropanes/toxicity , Fluorobenzenes/toxicity , Oviposition/drug effects , Animals , Cyclopropanes/administration & dosage , Female , Fluorobenzenes/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...