Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Microbiome ; 7(1): 53, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30935423

ABSTRACT

BACKGROUND: Viruses play an important role in ecosystems, including the built environment (BE). While numerous studies have characterized bacterial and fungal microbiomes in the BE, few have focused on the viral microbiome (virome). Longitudinal microbiome studies provide insight into the stability and dynamics of microbial communities; however, few such studies exist for the microbiome of the BE, and most have focused on bacteria. Here, we present a longitudinal, metagenomic-based analysis of the airborne DNA and RNA virome of a children's daycare center. Specifically, we investigate how the airborne virome varies as a function of season and human occupancy, and we identify possible sources of the viruses and their hosts, mainly humans, animals, plants, and insects. RESULTS: Season strongly influenced the airborne viral community composition, and a single sample collected when the daycare center was unoccupied suggested that occupancy also influenced the community. The pattern of influence differed between DNA and RNA viromes. Human-associated viruses were much more diverse and dominant in the winter, while the summertime virome contained a high relative proportion and diversity of plant-associated viruses. CONCLUSIONS: This airborne microbiome in this building exhibited seasonality in its viral community but not its bacterial community. Human occupancy influenced both types of communities. By adding new data about the viral microbiome to complement burgeoning information about the bacterial and fungal microbiomes, this study contributes to a more complete understanding of the airborne microbiome.


Subject(s)
Air Microbiology , Bacteria/classification , Metagenomics/methods , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , Viruses/classification , Bacteria/genetics , Bacteria/isolation & purification , Child Day Care Centers , Child, Preschool , DNA, Viral/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Longitudinal Studies , Male , Phylogeny , RNA, Viral/genetics , Seasons , Viruses/genetics , Viruses/isolation & purification
2.
Int J Hyg Environ Health ; 221(5): 764-774, 2018 06.
Article in English | MEDLINE | ID: mdl-29729999

ABSTRACT

BACKGROUND: Most Legionnaires' disease in the US and abroad is community-acquired and believed to be sporadic, or non-outbreak associated. Most patients are exposed to numerous water sources, thus making it difficult to focus environmental investigations. Identifying known sources of sporadic community-acquired Legionnaires' disease will inform future sporadic Legionnaires' disease investigations as well as highlight directions for research. The objective is to summarize and rank sporadic Legionnaires' disease sources based on the level of linkage between the environmental source and cases. METHODS: A PubMed search was conducted using the search terms legion* and (origins or source or transmission) and (sporadic or community-acquired). Studies of nosocomial and/or outbreak-associated disease were excluded from this review. Definite, probable, possible and suspect ranks were assigned to sources based on evidence of linkage to sporadic Legionnaires' disease. RESULTS: The search yielded 196 articles and 47 articles were included in the final review after application of exclusion criteria. A total of 28 sources were identified. Of these, eight were assigned definite rank including residential potable water and car air-conditioner water leakage. Probable rank was assigned to five sources including solar-heated potable water and soil. Possible rank was assigned to nine sources including residential potable water and cooling towers. Suspect rank was assigned to 20 sources including large building water systems and cooling towers. CONCLUSION: Residential potable water, large building water systems and car travel appear to contribute to a substantial proportion of sporadic Legionnaires' disease. Cooling towers are also a potentially significant source; however, definitive linkage to sporadic cases proves difficult. The sources of sporadic Legionnaires' disease cannot be definitively identified for most cases.


Subject(s)
Community-Acquired Infections/transmission , Legionnaires' Disease/transmission , Air Conditioning , Drinking Water , Environmental Pollutants , Humans , Legionella , Soil Microbiology , Water Microbiology
3.
Appl Environ Microbiol ; 83(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28087535

ABSTRACT

Acid mine drainage (AMD) is a major environmental problem affecting tens of thousands of kilometers of waterways worldwide. Passive bioremediation of AMD relies on microbial communities to oxidize and remove iron from the system; however, iron oxidation rates in AMD environments are highly variable among sites. At Scalp Level Run (Cambria County, PA), first-order iron oxidation rates are 10 times greater than at other coal-associated iron mounds in the Appalachians. We examined the bacterial community at Scalp Level Run to determine whether a unique community is responsible for the rapid iron oxidation rate. Despite strong geochemical gradients, including a >10-fold change in the concentration of ferrous iron from 57.3 mg/liter at the emergence to 2.5 mg/liter at the base of the coal tailings pile, the bacterial community composition was nearly constant with distance from the spring outflow. Scalp Level Run contains many of the same taxa present in other AMD sites, but the community is dominated by two strains of Ferrovum myxofaciens, a species that is associated with high rates of Fe(II) oxidation in laboratory studies.IMPORTANCE Acid mine drainage pollutes more than 19,300 km of rivers and streams and 72,000 ha of lakes worldwide. Remediation is frequently ineffective and costly, upwards of $100 billion globally and nearly $5 billion in Pennsylvania alone. Microbial Fe(II) oxidation is more efficient than abiotic Fe(II) oxidation at low pH (P. C. Singer and W. Stumm, Science 167:1121-1123, 1970, https://doi.org/10.1126/science.167.3921.1121). Therefore, AMD bioremediation could harness microbial Fe(II) oxidation to fuel more-cost-effective treatments. Advances will require a deeper understanding of the ecology of Fe(II)-oxidizing microbial communities and the factors that control their distribution and rates of Fe(II) oxidation. We investigated bacterial communities that inhabit an AMD site with rapid Fe(II) oxidation and found that they were dominated by two operational taxonomic units (OTUs) of Ferrovum myxofaciens, a taxon associated with high laboratory rates of iron oxidation. This research represents a step forward in identifying taxa that can be used to enhance cost-effective AMD bioremediation.


Subject(s)
Bacteria/metabolism , Betaproteobacteria/metabolism , Coal Mining , Ferric Compounds/chemistry , Iron/metabolism , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Acids , Bacteria/isolation & purification , Bacterial Physiological Phenomena , Betaproteobacteria/isolation & purification , Biodegradation, Environmental , Coal , Environmental Microbiology , Hydrogen-Ion Concentration , Industrial Waste , Iron/chemistry , Microbial Consortia , Mining , Oxidation-Reduction , Pennsylvania , Water Pollutants
4.
PLoS One ; 11(3): e0151004, 2016.
Article in English | MEDLINE | ID: mdl-26942410

ABSTRACT

Children's daycare centers appear to be hubs of respiratory infectious disease transmission, yet there is only limited information about the airborne microbial communities that are present in daycare centers. We have investigated the microbial community of the air in a daycare center, including seasonal dynamics in the bacterial community and the presence of specific viral pathogens. We collected filters from the heating, ventilation, and air conditioning (HVAC) system of a daycare center every two weeks over the course of a year. Amplifying and sequencing the 16S rRNA gene revealed that the air was dominated by Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes that are commonly associated with the human skin flora. Clear seasonal differences in the microbial community were not evident; however, the community structure differed when the daycare center was closed and unoccupied for a 13-day period. These results suggest that human occupancy, rather than the environment, is the major driver in shaping the microbial community structure in the air of the daycare center. Using PCR for targeted viruses, we detected a seasonal pattern in the presence of respiratory syncytial virus that included the period of typical occurrence of the disease related to the virus; however, we did not detect the presence of adenovirus or rotavirus at any time.


Subject(s)
Air Microbiology , Bacteria/metabolism , Child Day Care Centers , Seasons , Viruses/metabolism , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Phylogeny , Polymerase Chain Reaction , Principal Component Analysis
5.
Toxicol Appl Pharmacol ; 289(3): 397-408, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26529668

ABSTRACT

Chronic exposure to arsenic in drinking water causes cancer and non-cancer diseases. However, mechanisms for chronic arsenic-induced pathogenesis, especially in response to lower exposure levels, are unclear. In addition, the importance of health impacts from xeniobiotic-promoted microbiome changes is just being realized and effects of arsenic on the microbiome with relation to disease promotion are unknown. To investigate impact of arsenic exposure on both microbiome and host metabolism, the stucture and composition of colonic microbiota, their metabolic phenotype, and host tissue and plasma metabolite levels were compared in mice exposed for 2, 5, or 10weeks to 0, 10 (low) or 250 (high) ppb arsenite (As(III)). Genotyping of colonic bacteria revealed time and arsenic concentration dependent shifts in community composition, particularly the Bacteroidetes and Firmicutes, relative to those seen in the time-matched controls. Arsenic-induced erosion of bacterial biofilms adjacent to the mucosal lining and changes in the diversity and abundance of morphologically distinct species indicated changes in microbial community structure. Bacterical spores increased in abundance and intracellular inclusions decreased with high dose arsenic. Interestingly, expression of arsenate reductase (arsA) and the As(III) exporter arsB, remained unchanged, while the dissimilatory nitrite reductase (nrfA) gene expression increased. In keeping with the change in nitrogen metabolism, colonic and liver nitrite and nitrate levels and ratios changed with time. In addition, there was a concomitant increase in pathogenic arginine metabolites in the mouse circulation. These data suggest that arsenic exposure impacts the microbiome and microbiome/host nitrogen metabolism to support disease enhancing pathogenic phenotypes.


Subject(s)
Amino Acids/metabolism , Arsenic/pharmacology , Colon/drug effects , Colon/microbiology , Microbiota/drug effects , Nitrogen/metabolism , Animals , Arginine/metabolism , Bacteria/drug effects , Bacteria/genetics , Biofilms/drug effects , Colon/metabolism , Genotype , Liver/drug effects , Liver/metabolism , Liver/microbiology , Male , Mice , Mice, Inbred C57BL , Microbiota/genetics , Nitrates/metabolism , Nitrite Reductases/metabolism , Nitrites/metabolism
6.
Antimicrob Agents Chemother ; 59(6): 3433-40, 2015.
Article in English | MEDLINE | ID: mdl-25824217

ABSTRACT

A major challenge in microbial biofilm control is biocide resistance. Phenotypic adaptations and physical protective effects have been historically thought to be the primary mechanisms for glutaraldehyde resistance in bacterial biofilms. Recent studies indicate the presence of genetic mechanisms for glutaraldehyde resistance, but very little is known about the contributory genetic factors. Here, we demonstrate that efflux pumps contribute to glutaraldehyde resistance in Pseudomonas fluorescens and Pseudomonas aeruginosa biofilms. The RNA-seq data show that efflux pumps and phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis metabolic pathways were induced upon glutaraldehyde exposure. Furthermore, chemical inhibition of efflux pumps potentiates glutaraldehyde activity, suggesting that efflux activity contributes to glutaraldehyde resistance. Additionally, induction of known modulators of biofilm formation, including phosphonate degradation, lipid biosynthesis, and polyamine biosynthesis, may contribute to biofilm resistance and resilience. Fundamental understanding of the genetic mechanism of biocide resistance is critical for the optimization of biocide use and development of novel disinfection strategies. Our results reveal genetic components involved in glutaraldehyde resistance and a potential strategy for improved control of biofilms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Glutaral/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/metabolism , Pseudomonas fluorescens/drug effects , Pseudomonas fluorescens/metabolism , Disinfectants/pharmacology , Drug Resistance, Bacterial
7.
PLoS One ; 9(10): e107682, 2014.
Article in English | MEDLINE | ID: mdl-25338024

ABSTRACT

Microbial activity in produced water from hydraulic fracturing operations can lead to undesired environmental impacts and increase gas production costs. However, the metabolic profile of these microbial communities is not well understood. Here, for the first time, we present results from a shotgun metagenome of microbial communities in both hydraulic fracturing source water and wastewater produced by hydraulic fracturing. Taxonomic analyses showed an increase in anaerobic/facultative anaerobic classes related to Clostridia, Gammaproteobacteria, Bacteroidia and Epsilonproteobacteria in produced water as compared to predominantly aerobic Alphaproteobacteria in the fracturing source water. The metabolic profile revealed a relative increase in genes responsible for carbohydrate metabolism, respiration, sporulation and dormancy, iron acquisition and metabolism, stress response and sulfur metabolism in the produced water samples. These results suggest that microbial communities in produced water have an increased genetic ability to handle stress, which has significant implications for produced water management, such as disinfection.


Subject(s)
Alphaproteobacteria/genetics , Gammaproteobacteria/genetics , Metagenomics , Sulfur/metabolism , Water Microbiology , Alphaproteobacteria/classification , Carbohydrate Metabolism/genetics , Environment , Epsilonproteobacteria/classification , Epsilonproteobacteria/genetics , Gammaproteobacteria/metabolism , Natural Gas/microbiology , RNA, Ribosomal/genetics , Sequence Analysis , Wastewater/microbiology
8.
FEMS Microbiol Lett ; 357(1): 1-9, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24891293

ABSTRACT

Despite the obvious importance of viral transmission and ecology to medicine, epidemiology, ecology, agriculture, and microbiology, the study of viral bioaerosols and community structure has remained a vastly underexplored area, due to both unresolved technical challenges and unrecognized importance. High-throughput, culture-independent techniques such as viral metagenomics are beginning to revolutionize the study of viral ecology. With recent developments in viral metagenomics, characterization of viral bioaerosol communities provides an opportunity for high-impact future research. However, there remain significant challenges for the study of viral bioaerosols compared with viruses in other matrices, such as water, the human gut, and soil. Collecting enough biomass is essential for successful metagenomic analysis, but this is a challenge with viral bioaerosols. Herein, we provide a perspective on the importance of studying viral bioaerosols, the challenges of studying viral community structure, and the potential opportunities for improvements in methods to study viruses in indoor and outdoor air.


Subject(s)
Aerosols/analysis , Bacteria/genetics , Fungi/genetics , Air Microbiology , Animals , Biomass , Ecology , Humans , Metagenomics/methods
10.
Environ Sci Technol ; 47(22): 13141-50, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24088205

ABSTRACT

Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.


Subject(s)
Bacteria/growth & development , Geologic Sediments/chemistry , Natural Gas/analysis , Waste Disposal, Fluid , Water Microbiology , Bacteria/genetics , Base Sequence , Biodiversity , Molecular Sequence Data , Pennsylvania , RNA, Ribosomal, 16S/genetics
11.
Water Environ Res ; 82(3): 195-201, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20369562

ABSTRACT

The hybrid membrane biofilm process (HMBP) is a new approach to achieving total nitrogen removal from wastewater. Air-filled, hollow-fiber membranes are placed into an activated sludge basin and bulk aeration is suppressed. A nitrifying biofilm develops on the membranes, exporting nitrate and nitrite to the bulk liquid. The nitrate and nitrite are reduced by suspended biomass using influent BOD as the electron donor. Previous research demonstrated the HMBP concept at the bench scale and explored process fundamentals. This research explored the HMBP at the pilot scale, with a 120-L reaction tank, real wastewater, and a potentially scalable configuration. Nitrification rates averaged 0.5 g N m(-2)/d(-1), which were lower than found at the bench scale, and lower than predicted by a mathematical model, but still allowed effluent total nitrogen concentrations below 6 mg N/L with an average influent total nitrogen concentration of 25 mg N/L and a hydraulic retention time of 12 hours. More than 75% of the produced nitrate and nitrite was reduced with an average influent sCOD of only 68 mg/L and an average C:N ratio of 3.1. Mass balances on carbon and nitrogen suggest that nitrogen removal via nitrite occurred. This research confirms that the HMBP process is effective for BOD and nitrogen removal from wastewater, and suggests that the grid configuration is viable for scale-up.


Subject(s)
Bioreactors , Nitrogen/isolation & purification , Water Purification/methods , Biofilms , Nitrites/isolation & purification , Oxygen/chemistry , Pilot Projects , Waste Products/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...