Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Neurosci ; 20(13): 5076-82, 2000 Jul 01.
Article in English | MEDLINE | ID: mdl-10864965

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) mediate ganglionic transmission in the peripheral autonomic nervous system in mammals. Functional neuronal nAChRs have been shown to assemble from a combination of alpha and beta subunits, including alpha3, alpha5, alpha7, beta2, and beta4 in RNA-injected oocytes, but the subunit composition of functional neuronal nAChRs in vivo in mammals remains unknown. We examined the subunit composition of functional nAChRs in the intracardiac parasympathetic ganglion in a physiologically intact system in vivo. We report here that localized perfusion of the canine intracardiac ganglion in situ with an antagonist specific for nAChRs containing an alpha3/beta2 subunit interface (alpha-conotoxin MII 100-200 nm) resulted in reversible attenuation of the sinus cycle length (SCL) response by approximately 70% to electrical stimulation of the preganglionic vagus nerve. Perfusion with antagonist specific for receptors containing an alpha3/beta4 subunit interface (alpha-conotoxin AuIB 1 micrometer) resulted in attenuation in SCL responses (approximately 20%) compared with baseline when applied by itself, but not in animals pretreated with alpha-conotoxin MII. Perfusion of the ganglion with alpha-bungarotoxin (1 micrometer, which blocks alpha7 receptors) caused a reduction in SCL response by approximately 30% compared with baseline when perfused on its own and when added after blockade with MII and AuIB. Perfusion with hexamethonium bromide resulted in complete blockade of ganglionic transmission, confirming total perfusion of the ganglion and the nicotinic nature of ganglionic transmission at this synapse. Immunohistochemistry using monoclonal antibodies against specific nicotinic subunits confirmed the presence of alpha3, alpha7, beta2, and beta4 subunits. We conclude that functional ganglionic transmission in the canine intracardiac ganglion is mediated primarily by receptors containing an alpha3/beta2 subunit interface, with a smaller contribution by receptors containing alpha7 nAChRs. Despite the presence of beta4 subunits in functional channels, a contribution of a distinct alpha3/beta4 receptor population that does not include an alpha3/beta2 subunit interface was less clear.


Subject(s)
Ganglia, Parasympathetic/physiology , Heart/innervation , Neurons/physiology , Nicotinic Antagonists/pharmacology , Receptors, Nicotinic/physiology , Synaptic Transmission/physiology , Animals , Bungarotoxins/pharmacology , Conotoxins/pharmacology , Dogs , Electric Stimulation , Ganglia, Parasympathetic/drug effects , Heart/drug effects , Hexamethonium/pharmacology , Male , Neurons/drug effects , Synaptic Transmission/drug effects , Vagus Nerve/physiology
3.
Circulation ; 99(22): 2958-63, 1999 Jun 08.
Article in English | MEDLINE | ID: mdl-10359742

ABSTRACT

BACKGROUND: Previous work has shown that spontaneous and stimulated vagal activity is diminished in heart failure (HF) despite upregulation of functional postsynaptic cholinergic mechanisms. We therefore examined function of the postganglionic neuron in the paced canine model of HF as a possible site for diminished control. METHODS AND RESULTS: We measured sinus cycle length changes in response to electrical stimulation of preganglionic and postganglionic parasympathetic neurons innervating the sinoatrial node in control and HF dogs (both, n=8). Cervical vagus stimulation (preganglionic) demonstrated attenuated responses in the HF group at all levels of stimulation (P<0.05). Stimulation of the right atrial fat pad, containing both postganglionic nerves and terminals of preganglionic neurons, showed no such difference between control and HF (200+/-25 versus 192+/-18 ms). To ensure that preganglionic input and different levels of baseline sympathetic activity did not contribute to the group difference, similar stimulations were done in the presence of ganglionic and beta-adrenergic blockade. Under these conditions, postganglionic stimulation showed smaller changes in sinus cycle length, but the HF group response remained significantly higher than in controls (76+/-10 versus 20+/-2 ms; P<0. 01), indicating that the difference was independent of preganglionic input and sympathetic activity. CONCLUSIONS: A component of attenuated parasympathetic control in HF is located within the peripheral efferent limb. This defect is located within the parasympathetic ganglion. Future work should be focused on determining mechanisms of attenuated ganglionic transmission so that means targeted at restoring vagal activity can be developed.


Subject(s)
Cardiac Output, Low/physiopathology , Ganglia, Parasympathetic/physiopathology , Vagus Nerve/physiopathology , Adrenergic beta-Antagonists/pharmacology , Animals , Differential Threshold/physiology , Dogs , Electric Stimulation , Hemodynamics/physiology , Male , Neurons/physiology , Sinoatrial Node/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...