Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 13: 1068-1107, 2022.
Article in English | MEDLINE | ID: mdl-36262178

ABSTRACT

Carbon dots (CDs) show extensive potential in various fields such as sensing, bioimaging, catalysis, medicine, optoelectronics, and drug delivery due to their unique properties, that is, low cytotoxicity, cytocompatibility, water-solubility, multicolor wavelength tuned emission, photo-stability, easy modification, strong chemical inertness, etc. This review article especially focuses on the recent advancement (2015-2022) in the green synthesis of CDs, their application in metal ions sensing and microbial bioimaging, detection, and viability studies as well as their applications in pathogenic control and plant growth promotion.

2.
Inorg Chem ; 57(23): 14603-14616, 2018 Dec 03.
Article in English | MEDLINE | ID: mdl-30418750

ABSTRACT

The iron(II) complexes of two structural isomers of 2-(1 H-imidazol-2-yl)diazine reveal how ligand design can be a successful strategy to control the electronic and magnetic properties of complexes by fine-tuning their ligand field. The two isomers only differ in the position of a single diazinic nitrogen atom, having either a pyrazine (Z) or a pyrimidine (M) moiety. However, [Fe(M)3](ClO4)2 is a spin-crossover complex with a spin transition at 241 K, whereas [Fe(Z)3](ClO4)2 has a stable magnetic behavior between 2 and 300 K. This is corroborated by temperature-dependent Mössbauer spectra showing the presence of a quintet and a singlet state in equilibrium. The temperature-dependent single-crystal X-ray diffraction results relate the spin-crossover observed in [Fe(M)3](ClO4)2 to changes in the bond distances and angles of the coordination sphere of iron(II), hinting at a stronger σ donation of ligand Z in comparison to ligand M. The UV/vis spectra of both complexes are solved by means of the multiconfigurational wave-function-based method CASPT2 and confirm their different spin multiplicities at room temperature, as observed in the Mössbauer spectra. Calculations show larger stabilization of the singlet state in [Fe(Z)3]2+ than in [Fe(M)3]2+, stemming from the slightly stronger ligand field of the former (506 cm-1 in the singlet). This relatively weak effect is indeed capable of changing the spin multiplicity of the complexes and causes the appearance of the spin transition in the M complex.

3.
Acta Crystallogr E Crystallogr Commun ; 74(Pt 7): 874-877, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-30002877

ABSTRACT

The crystal structure of the title compound, [Ru(C7H6N4)3](PF6)2·3H2O, a novel RuII complex with the bidentate ligand 2-(1H-imidazol-2-yl)pyrimidine, comprises a complex cation in the meridional form exclusively, with a distorted octa-hedral geometry about the ruthenium(II) cation. The Ru-N bonds involving imidazole N atoms are comparatively shorter than the Ru-N bonds from pyrimidine because of the stronger basicity of the imidazole moiety. The three-dimensional hydrogen-bonded network involves all species in the lattice with water mol-ecules inter-acting with both counter-ions and NH hydrogen atoms from the complex. The supra-molecular structure of the crystal also shows that two units of the complex bind strongly through a mutual N-H⋯N bond. The electronic absorption spectrum of the complex displays an asymmetric band at 421 nm, which might point to the presence of two metal-to-ligand charge-transfer (MLCT) bands. Electrochemical measurements show a quasi-reversible peak referring to the RuIII/RuII reduction at 0.87 V versus Ag/AgCl.

SELECTION OF CITATIONS
SEARCH DETAIL
...