Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Molecules ; 26(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34641542

ABSTRACT

Cancer is the second leading cause of death in the world. Chemotherapy and radiotherapy (RT) are the common cancer treatments. In addition to these limitations, the development of adverse effects from chemotherapy and RT reduces the quality of life for cancer patients. Cellular radiosensitivity, or the ability to resist and overcome cell damage caused by ionizing radiation (IR), is directly related to cancer cells' response to RT. Therefore, radiobiological research is emphasizing chemical compounds 'radiosensitization of cancer cells so that they are more reactive in the IR spectrum. Recent years researchers have seen an increase in interest in natural products that have antitumor effects with minimal side effects. Natural products, on the other hand, are easy to recover and therefore less expensive. There have been several scientific studies done based on these compounds that have tested their ability in vitro and in vivo to induce tumor radiosensitization. The role of natural products in RT, as well as their usefulness and potential applications, is the goal of this current review.


Subject(s)
Biological Products/pharmacology , Radiotherapy/adverse effects , Berberine/pharmacology , Curcumin/pharmacology , Emodin/pharmacology , Genistein/pharmacology , Humans , Neoplasms/radiotherapy , Pentacyclic Triterpenes/pharmacology , Radiation-Protective Agents/pharmacology , Radiation-Sensitizing Agents/pharmacology , Resveratrol/pharmacology , Sesquiterpenes/pharmacology , Triterpenes/pharmacology , Vitamin D/pharmacology , Withanolides/pharmacology , Ursolic Acid
3.
Molecules ; 26(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34500597

ABSTRACT

Breast cancer persists as a diffuse source of cancer despite persistent detection and treatment. Flavonoids, a type of polyphenol, appear to be a productive option in the treatment of breast cancer, because of their capacity to regulate the tumor related functions of class of compounds. Plant polyphenols are flavonoids that appear to exhibit properties which are beneficial for breast cancer therapy. Numerous epidemiologic studies have been performed on the dynamic effect of plant polyphenols in the prevention of breast cancer. There are also subclasses of flavonoids that have antioxidant and anticarcinogenic activity. These can regulate the scavenging activity of reactive oxygen species (ROS) which help in cell cycle arrest and suppress the uncontrolled division of cancer cells. Numerous studies have also been performed at the population level, one of which reported a connection between cancer risk and intake of dietary flavonoids. Breast cancer appears to show intertumoral heterogeneity with estrogen receptor positive and negative cells. This review describes breast cancer, its various factors, and the function of flavonoids in the prevention and treatment of breast cancer, namely, how flavonoids and their subtypes are used in treatment. This review proposes that cancer risk can be reduced, and that cancer can be even cured by improving dietary intake. A large number of studies also suggested that the intake of fruit and vegetables is associated with reduced breast cancer and paper also includes the role and the use of nanodelivery of flavonoids in the healing of breast cancer. In addition, the therapeutic potential of orally administered phyto-bioactive compounds (PBCs) is narrowed because of poor stability and oral bioavailability of compounds in the gastrointestinal tract (GIT), and solubility also affects bioavailability. In recent years, creative nanotechnology-based approaches have been advised to enhance the activity of PBCs. Nanotechnology also offers the potential to become aware of disease at earlier stages, such as the detection of hidden or unconcealed metastasis colonies in patients diagnosed with lung, colon, prostate, ovarian, and breast cancer. However, nanoformulation-related effects and safety must not be overlooked. This review gives a brief discussion of nanoformulations and the effect of nanotechnology on herbal drugs.


Subject(s)
Breast Neoplasms/drug therapy , Flavonoids/pharmacology , Nanoparticles/administration & dosage , Animals , Antioxidants/pharmacology , Biological Availability , Breast Neoplasms/metabolism , Female , Fruit/chemistry , Humans , Polyphenols/pharmacology , Reactive Oxygen Species/metabolism , Vegetables/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...