Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 270, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605311

ABSTRACT

Barley (Hordeum vulgare L.) is a significant cereal crop belonging to Poaceae that is essential for human food and animal feeding. The production of barley grains was around 142.37 million tons in 2017/2018. However, the growth of barley was influenced by salinity which was enhanced by applying a foliar spray of salicylic acid. The current study investigated to evaluated the potential effect of SA on the barley (Hordeum vulgare L.) plants under salinity stress and its possible effects on physiological, biochemical, and growth responses. The experiment was conducted at Postgraduate Research Station (PARS), University of Agriculture; Faisalabad to assess the influence of salicylic acid on barley (Hordeum vulgare L.) under highly saline conditions. The experiment was conducted in a Completely Randomized Design (CRD) with 3 replicates. In plastic pots containing 8 kg of properly cleaned sand, two different types of barley (Sultan and Jau-17) were planted. The plants were then watered with a half-strength solution of Hoagland's nutritional solution. After the establishment of seedlings, two salt treatments (0 mM and 120 mM NaCl) were applied in combining three levels of exogenously applied salicylic acid (SA) (0, 0.5, and 1 mg L-1). Data about morphological, physiological, and biochemical attributes was recorded using standard procedure after three weeks of treatment. The morpho-physiological fresh weight of the shoot and root (48%), the dry mass of the shoot and root (66%), the plant height (18%), the chlorophyll a (30%), the chlorophyll b (22%), and the carotenoids (22%), all showed significant decreases. Salinity also decreased yield parameters and the chl. ratio (both at 29% and 26% of the total chl. leaf area index). Compared to the control parameters, the following data was recorded under salt stress: spike length, number of spikes, number of spikelets, number of tillers, biological yield, and harvest index. Salicylic acid was used as a foliar spray to lessen the effects of salinity stress, and 1 mg L-1 of salicylic acid proved more effective than 0.5 mg L-1. Both varieties show better growth by applying salicylic acid (0 mg L-1) as a control, showing normal growth. By increasing its level to (0.5 mg L-1), it shows better growth but maximized growth occurred at a higher level (1 mg L-1). Barley sultan (Hordeum vulgare L.) is the best variety as compared to Jau-17 performs more growth to mitigate salt stress (0mM and 120mM NaCl) by improving morpho-physiological parameters by enhancing plan height, Root and shoot fresh and dry weights, as well as root and shoot lengths, photosynthetic pigments, area of the leaves and their index, and yield attributes and reduce sodium ions.


Subject(s)
Hordeum , Humans , Hordeum/physiology , Chlorophyll A , Salicylic Acid/pharmacology , Sodium Chloride/pharmacology , Salt Stress , Salinity
2.
BMC Plant Biol ; 24(1): 138, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38408911

ABSTRACT

Micronutrient application has a crucial role in mitigating salinity stress in crop plants. This study was carried out to investigate the effect of zinc (Zn) and boron (B) as foliar applications on fenugreek growth and physiology under salt stress (0 and 120 mM). After 35 days of salt treatments, three levels of zinc (0, 50, and 100 ppm) and two levels of boron (0 and 2 ppm) were applied as a foliar application. Salinity significantly reduced root length (72.7%) and shoot length (33.9%), plant height (36%), leaf area (37%), root fresh weight (48%) and shoot fresh weight (75%), root dry weight (80%) and shoot dry weight (67%), photosynthetic pigments (78%), number of branches (50%), and seeds per pod (56%). Fenugreek's growth and physiology were improved by foliar spray of zinc and boron, which increased the length of the shoot (6%) and root length (2%), fresh root weight (18%), and dry root weight (8%), and chlorophyll a (1%), chlorophyll b (25%), total soluble protein content (3%), shoot calcium (9%) and potassium (5%) contents by significantly decreasing sodium ion (11%) content. Moreover, 100 ppm of Zn and 2 ppm of B enhanced the growth and physiology of fenugreek by reducing the effect of salt stress. Overall, boron and zinc foliar spray is suggested for improvement in fenugreek growth under salinity stress.


Subject(s)
Trigonella , Zinc , Boron/metabolism , Boron/pharmacology , Chlorophyll A/metabolism , Salt Stress , Surface-Active Agents/metabolism , Surface-Active Agents/pharmacology , Trigonella/metabolism , Zinc/metabolism , Zinc/pharmacology
3.
Front Plant Sci ; 13: 867172, 2022.
Article in English | MEDLINE | ID: mdl-35720587

ABSTRACT

Exogenous application of antioxidants can be helpful for plants to resist salinity, which can be a potentially simple, economical, and culturally feasible approach, compared with introgression and genetic engineering. Foliar spraying of alpha-tocopherol (α-tocopherol) is an approach to improve plant growth under salinity stress. Alpha-tocopherol acts as an antioxidant preventing salinity-induced cellular oxidation. This study was designed to investigate the negative effects of salinity (0 and 120mM NaCl) on linseed (Linum usitatissimum L.) and their alleviation by foliar spraying of α-tocopherol (0, 100, and 200mg L-1). Seeds of varieties "Chandni and Roshni" were grown in sand-filled plastic pots, laid in a completely randomized design in a factorial arrangement, and each treatment was replicated three times. Salinity significantly affected linseed morphology and yield by reducing shoot and root dry weights, photosynthetic pigment (Chl. a, Chl. b, total Chl., and carotenoids) contents, mineral ion (Ca2+, K+) uptake, and 100-seed weight. Concomitantly, salinity increased Na+, proline, soluble protein, peroxidase, catalase, and superoxide dismutase activities in both varieties. Conversely, the growth and yield of linseed varieties were significantly restored by foliar spraying of α-tocopherol under saline conditions, improving shoot and root dry matter accumulation, photosynthetic pigment, mineral ion, proline, soluble protein contents, peroxidase, catalase, superoxide dismutase activities, and 100-seed weight. Moreover, foliar spray of α-tocopherol alleviated the effects of salinity stress by reducing the Na+ concentration and enhancing K+ and Ca2+ uptake. The Chandni variety performed better than the Roshni, for all growth and physiological parameters studied. Foliar spray of α-tocopherol (200mg L-1) alleviated salinity effects by improving the antioxidant potential of linseed varieties, which ultimately restored growth and yield. Therefore, the use of α-tocopherol may enhance the productivity of linseed and other crops under saline soils.

4.
Front Plant Sci ; 12: 800251, 2021.
Article in English | MEDLINE | ID: mdl-34992625

ABSTRACT

Foliar spray of antioxidants is a pragmatic approach to combat various effects of salinity stress in agricultural crops. A pot trial was conducted to examine the effect of exogenously applied α-tocopherol (α-Toc) as foliar spray to induce morpho-physiological modulations in two varieties (Noori and Sabzpari) of okra grown under salt stress conditions (0 mM and 100 mM NaCl). After 36 days of salinity treatments, four levels (0, 100, 200 and 300 mg L-1) of α-tocopherol were sprayed. Salt stress significantly reduced root and shoot fresh and dry biomass, photosynthesis rate (A), transpiration rate (E), water use efficiency (A/E), stomatal conductance, internal CO2 concentration (C i )and C i /C a ), and photosynthetic pigments. Foliar spray of α-tocopherol proved effective in improving the growth of okra by significantly enhancing root dry weight, root length, shoot fresh weight, shoot length, Chl. a, Chl. b, Total chl., ß-Car., Total Car., A, E, A/E, C i, and C i /C a , leaf and root Ca2+ and K+ ion content, total soluble sugars, non-reducing sugars and total soluble protein content by significantly reducing root Na+ ion content. The Okra variety Noori performed better than Sabzpari in the examined attributes, and 300 mg L-1 application of α-tocopherol was more pronounced in improving the growth of okra by alleviating salinity effects. Therefore, the use of α-tocopherol (300 mg L-1) as a foliar spray is recommended to improve okra production in saline soils.

SELECTION OF CITATIONS
SEARCH DETAIL
...