Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 8: 416, 2017.
Article in English | MEDLINE | ID: mdl-28659828

ABSTRACT

Cellular homeostasis is a continuous phenomenon that if compromised can lead to several disorders including cancer. There is a need to understand the dynamics of cellular proliferation to get deeper insights into the prevalence of cancer. Mechanistic Target of Rapamycin (mTOR) is implicated as the central regulator of the metabolic pathway involved in growth whereas its two distinct complexes mTORC1 and mTORC2 perform particular functions in cellular propagation. To date, mTORC1 is a well defined therapeutic target to inhibit uncontrolled cell division, while the role of mTORC2 is not well characterized. Therefore, the current study is designed to understand the signaling dynamics of mTOR and its partner proteins such as PI3K, PTEN, mTORC2, PKB (Akt), mTORC1, and FOXO. For this purpose, a qualitative model of mTOR-associated Biological Regulatory Network (BRN) is constructed to predict its regulatory behaviors which may not be predictable otherwise. The depleted expression of PTEN and FOXO along with the overexpression of PI3K, mTORC2, mTORC1 and Akt is predicted as a stable steady state which is in accordance with their observed expression levels in the progression of various cancers. The qualitative model also predicts the homeostasis of all the entities in the form of qualitative cycles. The significant qualitative (discrete) cycle is identified by analyzing betweenness centralities of the qualitative (discrete) states. This cycle is further refined as a linear hybrid automaton model with the production (activation) and degradation (inhibition) time delays in order to analyze the real-time constraints for its existence. The analysis of the hybrid model provides a formal proof that during homeostasis the inhibition time delay of Akt is less than the inhibition time delay of mTORC2. In conclusion, our observations characterize that in homeostasis Akt is degraded with a faster rate than mTORC2 which suggests that the inhibition of Akt along with the activation of mTORC2 may be a better therapeutic strategy for the treatment of cancer.

2.
PeerJ ; 4: e2348, 2016.
Article in English | MEDLINE | ID: mdl-27703839

ABSTRACT

The alteration of glucose metabolism, through increased uptake of glucose and glutamine addiction, is essential to cancer cell growth and invasion. Increased flux of glucose through the Hexosamine Biosynthetic Pathway (HBP) drives increased cellular O-GlcNAcylation (hyper-O-GlcNAcylation) and contributes to cancer progression by regulating key oncogenes. However, the association between hyper-O-GlcNAcylation and activation of these oncogenes remains poorly characterized. Here, we implement a qualitative modeling framework to analyze the role of the Biological Regulatory Network in HBP activation and its potential effects on key oncogenes. Experimental observations are encoded in a temporal language format and model checking is applied to infer the model parameters and qualitative model construction. Using this model, we discover step-wise genetic alterations that promote cancer development and invasion due to an increase in glycolytic flux, and reveal critical trajectories involved in cancer progression. We compute delay constraints to reveal important associations between the production and degradation rates of proteins. O-linked N-acetylglucosamine transferase (OGT), an enzyme used for addition of O-GlcNAc during O-GlcNAcylation, is identified as a key regulator to promote oncogenesis in a feedback mechanism through the stabilization of c-Myc. Silencing of the OGT and c-Myc loop decreases glycolytic flux and leads to programmed cell death. Results of network analyses also identify a significant cycle that highlights the role of p53-Mdm2 circuit oscillations in cancer recovery and homeostasis. Together, our findings suggest that the OGT and c-Myc feedback loop is critical in tumor progression, and targeting these mediators may provide a mechanism-based therapeutic approach to regulate hyper-O-GlcNAcylation in human cancer.

3.
PeerJ ; 4: e2542, 2016.
Article in English | MEDLINE | ID: mdl-27781158

ABSTRACT

BACKGROUND: Breast cancer (BC) is one of the leading cause of death among females worldwide. The increasing incidence of BC is due to various genetic and environmental changes which lead to the disruption of cellular signaling network(s). It is a complex disease in which several interlinking signaling cascades play a crucial role in establishing a complex regulatory network. The logical modeling approach of René Thomas has been applied to analyze the behavior of estrogen receptor-alpha (ER-α) associated Biological Regulatory Network (BRN) for a small part of complex events that leads to BC metastasis. METHODS: A discrete model was constructed using the kinetic logic formalism and its set of logical parameters were obtained using the model checking technique implemented in the SMBioNet software which is consistent with biological observations. The discrete model was further enriched with continuous dynamics by converting it into an equivalent Petri Net (PN) to analyze the logical parameters of the involved entities. RESULTS: In-silico based discrete and continuous modeling of ER-α associated signaling network involved in BC provides information about behaviors and gene-gene interaction in detail. The dynamics of discrete model revealed, imperative behaviors represented as cyclic paths and trajectories leading to pathogenic states such as metastasis. Results suggest that the increased expressions of receptors ER-α, IGF-1R and EGFR slow down the activity of tumor suppressor genes (TSGs) such as BRCA1, p53 and Mdm2 which can lead to metastasis. Therefore, IGF-1R and EGFR are considered as important inhibitory targets to control the metastasis in BC. CONCLUSION: The in-silico approaches allow us to increase our understanding of the functional properties of living organisms. It opens new avenues of investigations of multiple inhibitory targets (ER-α, IGF-1R and EGFR) for wet lab experiments as well as provided valuable insights in the treatment of cancers such as BC.

4.
Comput Biol Chem ; 61: 210-20, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26908254

ABSTRACT

Angiopoietin-like protein 8 (ANGPTL8) (also known as betatrophin) is a newly identified secretory protein with a potential role in autophagy, lipid metabolism and pancreatic beta-cell proliferation. Its structural characterization is required to enhance our current understanding of its mechanism of action which could help in identifying its receptor and/or other binding partners. Based on the physiological significance and necessity of exploring structural features of ANGPTL8, the present study is conducted with a specific aim to model the structure of ANGPTL8 and study its possible interactions with Lipoprotein Lipase (LPL). To the best of our knowledge, this is the first attempt to predict 3-dimensional (3D) structure of ANGPTL8. Three different approaches were used for modeling of ANGPTL8 including homology modeling, de-novo structure prediction and their amalgam which is then proceeded by structure verification using ERRATT, PROSA, Qmean and Ramachandran plot scores. The selected models of ANGPTL8 were further evaluated for protein-protein interaction (PPI) analysis with LPL using CPORT and HADDOCK server. Our results have shown that the crystal structure of iSH2 domain of Phosphatidylinositol 3-kinase (PI3K) p85ß subunit (PDB entry: 3mtt) is a good candidate for homology modeling of ANGPTL8. Analysis of inter-molecular interactions between the structure of ANGPTL8 and LPL revealed existence of several non-covalent interactions. The residues of LPL involved in these interactions belong from its lid region, thrombospondin (TSP) region and heparin binding site which is suggestive of a possible role of ANGPTL8 in regulating the proteolysis, motility and localization of LPL. Besides, the conserved residues of SE1 region of ANGPTL8 formed interactions with the residues around the hinge region of LPL. Overall, our results support a model of inhibition of LPL by ANGPTL8 through the steric block of its catalytic site which will be further explored using wet lab studies in future.


Subject(s)
Lipoprotein Lipase/metabolism , Peptide Hormones/chemistry , Amino Acid Sequence , Angiopoietin-Like Protein 8 , Angiopoietin-like Proteins , Humans , Peptide Hormones/metabolism , Protein Conformation , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...