Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 14(2): e0212031, 2019.
Article in English | MEDLINE | ID: mdl-30794557

ABSTRACT

We describe the use of a ligation-based targeted whole transcriptome expression profiling assay, TempO-Seq, to profile formalin-fixed paraffin-embedded (FFPE) tissue, including H&E stained FFPE tissue, by directly lysing tissue scraped from slides without extracting RNA or converting the RNA to cDNA. The correlation of measured gene expression changes in unfixed and fixed samples using blocks prepared from a pellet of a single cell type was R2 = 0.97, demonstrating that no significant artifacts were introduced by fixation. Fixed and fresh samples prepared in an equivalent manner produced comparable sequencing depth results (+/- 20%), with similar %CV (11.5 and 12.7%, respectively), indicating no significant loss of measurable RNA due to fixation. The sensitivity of the TempO-Seq assay was the same whether the tissue section was fixed or not. The assay performance was equivalent for human, mouse, or rat whole transcriptome. The results from 10 mm2 and 2 mm2 areas of tissue obtained from 5 µm thick sections were equivalent, thus demonstrating high sensitivity and ability to profile focal areas of histology within a section. Replicate reproducibility of separate areas of tissue ranged from R2 = 0.83 (lung) to 0.96 (liver) depending on the tissue type, with an average correlation of R2 = 0.90 across nine tissue types. The average %CVs were 16.8% for genes expressed at greater than 200 counts, and 20.3% for genes greater than 50 counts. Tissue specific differences in gene expression were identified and agreed with the literature. There was negligible impact on assay performance using FFPE tissues that had been archived for up to 30 years. Similarly, there was negligible impact of H&E staining, facilitating accurate visualization for scraping and assay of small focal areas of specific histology within a section.


Subject(s)
Exome Sequencing/methods , Gene Expression Profiling/methods , Animals , Cell Line, Tumor , Formaldehyde , Gene Expression Regulation , Humans , MCF-7 Cells , Mice , Paraffin Embedding , Rats , Reproducibility of Results , Tissue Fixation
2.
J Bacteriol ; 186(12): 3730-7, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15175286

ABSTRACT

Aer is a membrane-associated protein that mediates aerotactic responses in Escherichia coli. Its C-terminal half closely resembles the signaling domains of methyl-accepting chemotaxis proteins (MCPs), which undergo reversible methylation at specific glutamic acid residues to adapt their signaling outputs to homogeneous chemical environments. MCP-mediated behaviors are dependent on two specific enzymes, CheR (methyltransferase) and CheB (methylesterase). The Aer signaling domain contains unorthodox methylation sites that do not conform to the consensus motif for CheR or CheB substrates, suggesting that Aer, unlike conventional MCPs, might be a methylation-independent transducer. Several lines of evidence supported this possibility. (i) The Aer protein was not detectably modified by either CheR or CheB. (ii) Amino acid replacements at the putative Aer methylation sites generally had no deleterious effect on Aer function. (iii) Aer promoted aerotactic migrations on semisolid media in strains that lacked all four of the E. coli MCPs. CheR and CheB function had no influence on the rate of aerotactic movements in those strains. Thus, Aer senses and signals efficiently in the absence of deamidation or methylation, methylation changes, methylation enzymes, and methyl-accepting chemotaxis proteins. We also found that chimeric transducers containing the PAS-HAMP sensing domain of Aer joined to the signaling domain and methylation sites of Tar, an orthodox MCP, exhibited both methylation-dependent and methylation-independent aerotactic behavior. The hybrid Aear transducers demonstrate that methylation independence does not emanate from the Aer signaling domain but rather may be due to transience of the cellular redox changes that are thought to trigger Aer-mediated behavioral responses.


Subject(s)
Carrier Proteins/metabolism , Chemotaxis , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Gene Expression Regulation, Bacterial , Oxygen/pharmacology , Amino Acid Sequence , Carrier Proteins/chemistry , Carrier Proteins/genetics , Culture Media , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Intercellular Signaling Peptides and Proteins , Methylation , Molecular Sequence Data , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...