Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 93(4): 044501, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35489938

ABSTRACT

In the past two decades, near-infrared (NIR) hyperspectral imaging instruments have revolutionized our conception of planetary surfaces in terms of evolution, geology, mineralogy, and alteration processes. The cornerstone of this remote analysis technique is the synergy between imagery, giving the geomorphological context of the observations, and NIR spectroscopy whose spectral range is sensitive to the main absorption features of most of the minerals present on planetary surfaces. The development of a generation of space instrument based on Acousto-Optic Tunable Filters (AOTFs) increases the capacity of these spectrometers to be set up in a variety of space probes. The ExoCam concept, developed at Institut d'Astrophysique Spatiale and profiting from the lab's previous experience (MicrOmega onboard Phobos-Grunt, Hayabusa 2 and ExoMars), thus, proposes for the first time to do hyperspectral imagery through a wide aperture AOTF (15 × 15 mm2) in the 0.95-3.6 µm spectral range. The characterization of this instrumental concept, led on a representative breadboard built for this purpose, showed that the acousto-optic diffraction preserves the image quality up to the diffraction/resolution limit over the whole field of view. The spectral resolution (from 2 to 25 nm over the spectral range) and accuracy of the instrument are also consistent with the identification of planetary surface minerals. This paper describes the ExoCam concept and objectives, the setup of an optical breadboard representative of a space instrument based on this concept, and the results of performance characterizations realized on the breadboard.

2.
Science ; 365(6455): 817-820, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31439797

ABSTRACT

The near-Earth asteroid (162173) Ryugu is a 900-m-diameter dark object expected to contain primordial material from the solar nebula. The Mobile Asteroid Surface Scout (MASCOT) landed on Ryugu's surface on 3 October 2018. We present images from the MASCOT camera (MASCam) taken during the descent and while on the surface. The surface is covered by decimeter- to meter-sized rocks, with no deposits of fine-grained material. Rocks appear either bright, with smooth faces and sharp edges, or dark, with a cauliflower-like, crumbly surface. Close-up images of a rock of the latter type reveal a dark matrix with small, bright, spectrally different inclusions, implying that it did not experience extensive aqueous alteration. The inclusions appear similar to those in carbonaceous chondrite meteorites.

3.
Science ; 364(6437): 272-275, 2019 04 19.
Article in English | MEDLINE | ID: mdl-30890589

ABSTRACT

The near-Earth asteroid 162173 Ryugu, the target of the Hayabusa2 sample-return mission, is thought to be a primitive carbonaceous object. We report reflectance spectra of Ryugu's surface acquired with the Near-Infrared Spectrometer (NIRS3) on Hayabusa2, to provide direct measurements of the surface composition and geological context for the returned samples. A weak, narrow absorption feature centered at 2.72 micrometers was detected across the entire observed surface, indicating that hydroxyl (OH)-bearing minerals are ubiquitous there. The intensity of the OH feature and low albedo are similar to thermally and/or shock-metamorphosed carbonaceous chondrite meteorites. There are few variations in the OH-band position, which is consistent with Ryugu being a compositionally homogeneous rubble-pile object generated from impact fragments of an undifferentiated aqueously altered parent body.

4.
Science ; 354(6319): 1563-1566, 2016 12 23.
Article in English | MEDLINE | ID: mdl-27856846

ABSTRACT

Carbon dioxide (CO2) is one of the most abundant species in cometary nuclei, but because of its high volatility, CO2 ice is generally only found beneath the surface. We report the infrared spectroscopic identification of a CO2 ice-rich surface area located in the Anhur region of comet 67P/Churyumov-Gerasimenko. Spectral modeling shows that about 0.1% of the 80- by 60-meter area is CO2 ice. This exposed ice was observed a short time after the comet exited local winter; following the increased illumination, the CO2 ice completely disappeared over about 3 weeks. We estimate the mass of the sublimated CO2 ice and the depth of the eroded surface layer. We interpret the presence of CO2 ice as the result of the extreme seasonal changes induced by the rotation and orbit of the comet.

5.
Nature ; 529(7586): 368-72, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26760209

ABSTRACT

Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.


Subject(s)
Extraterrestrial Environment/chemistry , Ice/analysis , Meteoroids , Diffusion , Gases/analysis , Gases/chemistry , Spectrum Analysis
7.
Science ; 349(6247): aab0232, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26228151

ABSTRACT

The structure of the upper layer of a comet is a product of its surface activity. The Rosetta Lander Imaging System (ROLIS) on board Philae acquired close-range images of the Agilkia site during its descent onto comet 67P/Churyumov-Gerasimenko. These images reveal a photometrically uniform surface covered by regolith composed of debris and blocks ranging in size from centimeters to 5 meters. At the highest resolution of 1 centimeter per pixel, the surface appears granular, with no apparent deposits of unresolved sand-sized particles. The thickness of the regolith varies across the imaged field from 0 to 1 to 2 meters. The presence of aeolian-like features resembling wind tails hints at regolith mobilization and erosion processes. Modeling suggests that abrasion driven by airfall-induced particle "splashing" is responsible for the observed formations.

8.
Science ; 349(6247): aab0671, 2015 Jul 31.
Article in English | MEDLINE | ID: mdl-26228154

ABSTRACT

The structure and composition of cometary constituents, down to their microscopic scale, are critical witnesses of the processes and ingredients that drove the formation and evolution of planetary bodies toward their present diversity. On board Rosetta's lander Philae, the Comet Infrared and Visible Analyser (CIVA) experiment took a series of images to characterize the surface materials surrounding the lander on comet 67P/Churyumov-Gerasimenko. Images were collected twice: just after touchdown, and after Philae finally came to rest, where it acquired a full panorama. These images reveal a fractured surface with complex structure and a variety of grain scales and albedos, possibly constituting pristine cometary material.

9.
Science ; 347(6220): aaa0628, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25613895

ABSTRACT

The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ(-1)), and the broad absorption feature in the 2.9-to-3.6-micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.

10.
Science ; 334(6055): 492-4, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22034430

ABSTRACT

The Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS) on Rosetta obtained hyperspectral images, spectral reflectance maps, and temperature maps of the asteroid 21 Lutetia. No absorption features, of either silicates or hydrated minerals, have been detected across the observed area in the spectral range from 0.4 to 3.5 micrometers. The surface temperature reaches a maximum value of 245 kelvin and correlates well with topographic features. The thermal inertia is in the range from 20 to 30 joules meter(-2) kelvin(-1) second(-0.5), comparable to a lunarlike powdery regolith. Spectral signatures of surface alteration, resulting from space weathering, seem to be missing. Lutetia is likely a remnant of the primordial planetesimal population, unaltered by differentiation processes and composed of chondritic materials of enstatitic or carbonaceous origin, dominated by iron-poor minerals that have not suffered aqueous alteration.

11.
Science ; 328(5986): 1682-6, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20576889

ABSTRACT

The composition of the ancient martian crust is a key ingredient in deciphering the environment and evolution of early Mars. We present an analysis of the composition of large craters in the martian northern plains based on data from spaceborne imaging spectrometers. Nine of the craters have excavated assemblages of phyllosilicates from ancient, Noachian crust buried beneath the plains' cover. The phyllosilicates are indistinguishable from those exposed in widespread locations in the southern highlands, demonstrating that liquid water once altered both hemispheres of Mars.


Subject(s)
Mars , Minerals/analysis , Silicates/analysis , Water , Chlorides/analysis , Extraterrestrial Environment , Spacecraft , Spectrum Analysis
12.
Nature ; 454(7202): 305-9, 2008 Jul 17.
Article in English | MEDLINE | ID: mdl-18633411

ABSTRACT

Phyllosilicates, a class of hydrous mineral first definitively identified on Mars by the OMEGA (Observatoire pour la Mineralogie, L'Eau, les Glaces et l'Activitié) instrument, preserve a record of the interaction of water with rocks on Mars. Global mapping showed that phyllosilicates are widespread but are apparently restricted to ancient terrains and a relatively narrow range of mineralogy (Fe/Mg and Al smectite clays). This was interpreted to indicate that phyllosilicate formation occurred during the Noachian (the earliest geological era of Mars), and that the conditions necessary for phyllosilicate formation (moderate to high pH and high water activity) were specific to surface environments during the earliest era of Mars's history. Here we report results from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) of phyllosilicate-rich regions. We expand the diversity of phyllosilicate mineralogy with the identification of kaolinite, chlorite and illite or muscovite, and a new class of hydrated silicate (hydrated silica). We observe diverse Fe/Mg-OH phyllosilicates and find that smectites such as nontronite and saponite are the most common, but chlorites are also present in some locations. Stratigraphic relationships in the Nili Fossae region show olivine-rich materials overlying phyllosilicate-bearing units, indicating the cessation of aqueous alteration before emplacement of the olivine-bearing unit. Hundreds of detections of Fe/Mg phyllosilicate in rims, ejecta and central peaks of craters in the southern highland Noachian cratered terrain indicate excavation of altered crust from depth. We also find phyllosilicate in sedimentary deposits clearly laid by water. These results point to a rich diversity of Noachian environments conducive to habitability.

13.
Nature ; 450(7170): 641-5, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18046396

ABSTRACT

The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90-120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 microm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at approximately 115 km and varies with solar zenith angle over a range of approximately 10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km +/- 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.

14.
Nature ; 450(7170): 637-40, 2007 Nov 29.
Article in English | MEDLINE | ID: mdl-18046395

ABSTRACT

Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright 'dipole' feature surrounded by a cold 'collar' at its north pole. The polar dipole is a 'double-eye' feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus' south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.

15.
Science ; 317(5842): 1206-10, 2007 Aug 31.
Article in English | MEDLINE | ID: mdl-17673623

ABSTRACT

The Mars Exploration Rover (MER), Opportunity, showed that layered sulfate deposits in Meridiani Planum formed during a period of rising acidic ground water. Crystalline hematite spherules formed in the deposits as a consequence of aqueous alteration and were concentrated on the surface as a lag deposit as wind eroded the softer sulfate rocks. On the basis of Mars Express Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) orbital data, we demonstrate that crystalline hematite deposits are associated with layered sulfates in other areas on Mars, implying that Meridiani-like ground water systems were indeed widespread and representative of an extensive acid sulfate aqueous system.


Subject(s)
Ferric Compounds , Mars , Water , Extraterrestrial Environment
16.
Nature ; 448(7149): 54-6, 2007 Jul 05.
Article in English | MEDLINE | ID: mdl-17611536

ABSTRACT

Hyperion, Saturn's eighth largest icy satellite, is a body of irregular shape in a state of chaotic rotation. The surface is segregated into two distinct units. A spatially dominant high-albedo unit having the strong signature of H2O ice contrasts with a unit that is about a factor of four lower in albedo and is found mostly in the bottoms of cup-like craters. Here we report observations of Hyperion's surface in the ultraviolet and near-infrared spectral regions with two optical remote sensing instruments on the Cassini spacecraft at closest approach during a fly-by on 25-26 September 2005. The close fly-by afforded us the opportunity to obtain separate reflectance spectra of the high- and low-albedo surface components. The low-albedo material has spectral similarities and compositional signatures that link it with the surface of Phoebe and a hemisphere-wide superficial coating on Iapetus.

17.
Nature ; 438(7068): 623-7, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16319882

ABSTRACT

The recent identification of large deposits of sulphates by remote sensing and in situ observations has been considered evidence of the past presence of liquid water on Mars. Here we report the unambiguous detection of diverse phyllosilicates, a family of aqueous alteration products, on the basis of observations by the OMEGA imaging spectrometer on board the Mars Express spacecraft. These minerals are mainly associated with Noachian outcrops, which is consistent with an early active hydrological system, sustaining the long-term contact of igneous minerals with liquid water. We infer that the two main families of hydrated alteration products detected-phyllosilicates and sulphates--result from different formation processes. These occurred during two distinct climatic episodes: an early Noachian Mars, resulting in the formation of hydrated silicates, followed by a more acidic environment, in which sulphates formed.


Subject(s)
Aluminum Silicates/analysis , Aluminum Silicates/chemistry , Climate , Extraterrestrial Environment/chemistry , Mars , Clay , Hydrogen-Ion Concentration , Iron/analysis , Magnesium/analysis , Space Flight , Spacecraft , Sulfates/analysis , Sulfates/chemistry , Water/analysis , Water/chemistry
18.
Nature ; 435(7043): 786-9, 2005 Jun 09.
Article in English | MEDLINE | ID: mdl-15944697

ABSTRACT

Titan is the only satellite in our Solar System with a dense atmosphere. The surface pressure is 1.5 bar (ref. 1) and, similar to the Earth, N2 is the main component of the atmosphere. Methane is the second most important component, but it is photodissociated on a timescale of 10(7) years (ref. 3). This short timescale has led to the suggestion that Titan may possess a surface or subsurface reservoir of hydrocarbons to replenish the atmosphere. Here we report near-infrared images of Titan obtained on 26 October 2004 by the Cassini spacecraft. The images show that a widespread methane ocean does not exist; subtle albedo variations instead suggest topographical variations, as would be expected for a more solid (perhaps icy) surface. We also find a circular structure approximately 30 km in diameter that does not resemble any features seen on other icy satellites. We propose that the structure is a dome formed by upwelling icy plumes that release methane into Titan's atmosphere.


Subject(s)
Extraterrestrial Environment/chemistry , Gases/analysis , Ice/analysis , Infrared Rays , Moon , Photography , Saturn , Atmosphere/chemistry , Gases/chemistry , Geography , Hydrocarbons/analysis , Hydrocarbons/chemistry , Methane/analysis , Methane/chemistry , Spacecraft
19.
Nature ; 435(7038): 66-9, 2005 May 05.
Article in English | MEDLINE | ID: mdl-15875014

ABSTRACT

The origin of Phoebe, which is the outermost large satellite of Saturn, is of particular interest because its inclined, retrograde orbit suggests that it was gravitationally captured by Saturn, having accreted outside the region of the solar nebula in which Saturn formed. By contrast, Saturn's regular satellites (with prograde, low-inclination, circular orbits) probably accreted within the sub-nebula in which Saturn itself formed. Here we report imaging spectroscopy of Phoebe resulting from the Cassini-Huygens spacecraft encounter on 11 June 2004. We mapped ferrous-iron-bearing minerals, bound water, trapped CO2, probable phyllosilicates, organics, nitriles and cyanide compounds. Detection of these compounds on Phoebe makes it one of the most compositionally diverse objects yet observed in our Solar System. It is likely that Phoebe's surface contains primitive materials from the outer Solar System, indicating a surface of cometary origin.

20.
Science ; 307(5715): 1581-4, 2005 Mar 11.
Article in English | MEDLINE | ID: mdl-15718426

ABSTRACT

The Observatoire pour la Minéralogie, l'Eau, les Glaces, et l'Activité (OMEGA) visible-infrared imaging spectrometer extensively observed regions of Mars with latitudes above 70 degrees N in late 2004 (heliocentric longitude from Ls 93 degrees to Ls 127 degrees ). The extent of water ice at the surface and the size of ice grains were monitored as a function of time. Bright, small-grained frost, which initially covered a large fraction of the polar cap, waned in favor of large-grained ice. In outlying regions, dominated by large-grained ice, the albedo increased over the period. Evaluating the dust content was model dependent. However, contamination of ice by dust was low.


Subject(s)
Ice , Mars , Carbon Dioxide , Extraterrestrial Environment , Seasons , Spacecraft , Spectroscopy, Near-Infrared , Spectrum Analysis , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...