Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Res Commun ; 48(3): 1367-1377, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38243140

ABSTRACT

The aim of this study was to evaluate the effects of different selenium compounds on the sperm quality of cryopreserved ram semen. Ejaculates from four rams, collected using an artificial vagina heated to 38 °C, were individually evaluated. The approved ejaculates were pooled and diluted (1:1 v:v) in Tris-egg yolk extender (20%, v/v) and separated into two control groups, one cooled for 2 h and the other for 4 h. The pooled ejaculates at the two cooling periods were supplemented with two doses (0.5 and 1 µg/mL) of organic selenium (ORG), and inorganic selenium (SeNa), each. The samples were packed in 0.25 ml straws, at a concentration of 400 × 106 sperms/mL and stored in liquid nitrogen. The straws were thawed in a water bath at 37 °C for 20 s, and the samples were subjected to sperm kinetics evaluation by Computer Assisted Semen Analysis software. Sperm membrane integrity, acrosome morphology, and mitochondrial potential were assessed. In addition, oxidative stress markers reactive oxygen species (ROS), ferric reducing antioxidant power (FRAP), thiobarbituric acid reactive species (TBARS), and glutathione peroxidase (GPx) enzyme activity) were also evaluated. No significant improvement was observed in the ram semen quality at the two cooling times. Supplementation of the freezing extender with 0.5 µg/mL ORG, subjected to 4 h cooling period, increased the sperm motility when compared with the control group at the same cooling time. In addition, the 0.5 µg/mL SeNa group, under the 2 h cooling period, showed an increase in sperm motility when compared to the control group at the same cooling period. Considering the importance of sperm motility as a fertility parameter, our study indicates that supplementation with ORG and SeNa can help improve the total motility of the cryopreserved ram semen.


Subject(s)
Cryopreservation , Selenium , Semen Analysis , Semen Preservation , Animals , Male , Semen Preservation/veterinary , Semen Preservation/methods , Selenium/pharmacology , Selenium/administration & dosage , Cryopreservation/veterinary , Cryopreservation/methods , Sheep , Semen Analysis/veterinary , Semen/drug effects , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/physiology , Freezing
2.
Behav Brain Res ; 426: 113847, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35306095

ABSTRACT

Clinical evidence suggests that neuroinflammation, activation of the immune system, and the composition of the intestinal microbiota are involved in the pathology of depression. This study evaluated the effectiveness of a probiotic intervention using Lactococcus lactis subsp. cremoris LL95 in ameliorating mood disorders in a lipopolysaccharide (LPS)-induced depression-like mouse model. C57BL/6 mice were randomly divided into four groups and treated with 5 mg/kg LPS via intraperitoneal injection to induce depression-like symptoms, followed by oral administration of LL95 for one week (1â€¯× 109 CFU/mouse). The animals were then subjected to a series of behavioral assessments, including open field, sucrose preference, and forced swimming tests. In addition, we evaluated the levels of reactive oxygen species, tumor necrosis factor-α, and interleukin-1ß in the hippocampal tissues of these animals, and also determined their fecal lactic acid bacteria (LAB) content. LL95 intervention improved LPS-induced depression-like behaviors in mice, including decreased sucrose preference and increased immobility time in the forced swim test. LL95 treatment reversed the LPS-induced increase in hippocampal levels of reactive oxygen species and tumor necrosis factor-α, and of interleukin-1ß to a lesser extent. Furthermore, LL95 intervention increased the fecal LAB content in these animals, suggesting changes in the gut microbiota. These findings suggest that LL95 exerts antidepressant-like effects in LPS-induced depression, which may be attributed to modulation of the oxidative status and pro-inflammatory cytokine expression in the hippocampus and alteration in the LAB content of the gut microbiota.


Subject(s)
Lactococcus lactis , Lipopolysaccharides , Animals , Depression/chemically induced , Depression/drug therapy , Depression/metabolism , Lactococcus , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL
3.
Environ Sci Pollut Res Int ; 28(47): 67394-67403, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34254248

ABSTRACT

In this study, we investigated the possible role of pesticide exposure in contributing to neurological diseases such as depression. Here, we evaluated whether a subchronic low dose of a glyphosate-based herbicide (GBH) could induce alterations in the central nervous system, using the flavonoid quercetin as a therapeutic strategy. Forty mice were divided into four treatment groups: control, GBH, quercetin, and GBH+Quer groups and received 50 mg/kg of GBH solution, 30 mg/kg of quercetin, and/or vehicles for 30 days via gavage. After performing behavioral tests, such as the open field (OF), elevated plus maze (EPM), forced swim test (FST), and sucrose preference test (SPT), the mice were euthanized and their hippocampal tissues were collected to measure the levels of oxidative stress markers such as reactive species (RS), total antioxidant capacity (FRAP), reduced glutathione (GSH), and acetylcholinesterase activity (AChE), as well as for histological evaluation. The GBH group showed anxious and depressive-like behavior in the EPM and FST tests, as well as increased levels of RS and decreased GSH levels in the hippocampus. Quercetin treatment in the GBH+Quer group allowed partial or total improvement in behavioral tests (EPM and FST) and in the levels of oxidative stress markers (RS and GSH). However, the quercetin group showed similar behavior to the GBH group after treatment. The results revealed that oral exposure to a subchronic low dose of GBH was capable of promoting effects on behavior and oxidative stress in the hippocampus of mice. In addition, despite quercetin having a neuroprotective role, caution is needed when considering the possible per se effects of its continuous supplementation.


Subject(s)
Herbicides , Acetylcholinesterase , Animals , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/toxicity , Mice , Quercetin , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...