Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Comp Pathol ; 161: 43-54, 2018 May.
Article in English | MEDLINE | ID: mdl-30173857

ABSTRACT

Infectious bronchitis viruses (IBVs) circulating in Malaysia are classified into two groups as Malaysian QX-like and variant strains. In this study, the pathogenicity of IBS130/2015 (QX-like) and IBS037A/2014 (variant) IBVs in 1-day-old and 30-day-old specific pathogen free (SPF) chickens was characterized. Both strains caused respiratory and kidney infections based on immunohistochemistry (IHC), real-time quantitative polymerase chain reaction (qPCR) and a ciliostasis study; however, the results showed that the QX-like strain was more pathogenic, caused higher mortality and showed higher tissue tropism for the kidney than the variant strain. In contrast, despite causing low or no mortality depending on the age of the infected chickens, the Malaysian variant strain showed high tissue tropism for the respiratory tract compared with the QX-like strain. IHC and qPCR indicated the presence of both IBV strains in the epithelial lining of villi in the jejunum and the caecal tonsil; however, no pathological changes were detected in these organs. Both the Malaysian QX-like and variant IBV strains are able to infect the respiratory tract and kidney of chickens irrespective of age.


Subject(s)
Coronavirus Infections/veterinary , Infectious bronchitis virus/pathogenicity , Poultry Diseases/pathology , Poultry Diseases/virology , Animals , Chickens , Malaysia , Specific Pathogen-Free Organisms
2.
Avian Dis ; 61(4): 442-452, 2017 12.
Article in English | MEDLINE | ID: mdl-29337625

ABSTRACT

Infectious bronchitis virus (IBV) is one of the major poultry pathogens of global importance. However, the prevalence of IBV strains in Malaysia is poorly characterized. The partial genomic sequences (6.8 kb) comprising the S-3a/3b-E-M-intergenic region-5a/5b-N gene order of 11 Malaysian IBVs isolated in 2014 and 2015 were sequenced using next-generation sequencing technology. Phylogenetic and pairwise sequence comparison analysis showed that the isolated IBVs are divided into two groups. Group 1 (IBS124/2015, IBS125/2015, IBS126/2015, IBS130/2015, IBS131/2015, IBS138/2015, and IBS142/2015) shared 90%-95% nucleotide and deduced amino acid similarities to the QX-like strain. Among these isolates, IBS142/2015 is the first IBV detected in Sarawak state located in East Malaysia (Borneo Island). Meanwhile, IBV isolates in Group 2 (IBS037A/2015, IBS037B/2015, IBS051/2015, and IBS180/2015) were 91.62% and 89.09% identical to Malaysian variant strain MH5365/95 (EU086600) at nucleotide and amino acid levels, respectively. In addition, all studied IBVs were distinctly separate from Massachusetts (70%-72% amino acid similarity) and European strains including 793/B, Italy-02, and D274 (68%-73% amino acid similarity). Viruses in Group 1 have the insertion of three amino acids at positions 23, 121, and 122 of the S1 protein and recombinant events detected at nucleotide position 4354-5864, with major parental sequence derived from QX-like (CK-CH-IBYZ-2011) and a minor parental sequence derived from Massachusetts vaccine strain (H120). This study demonstrated coexistence of the IBV Malaysian variant strain along with the QX-like strain in Malaysia.


Subject(s)
Chickens , Coronavirus Infections/veterinary , Gene Order , Genome, Viral , Infectious bronchitis virus/genetics , Poultry Diseases/epidemiology , Animals , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , DNA, Intergenic , Malaysia/epidemiology , Phylogeny , Poultry Diseases/virology
3.
Lancet Glob Health ; 4(9): e633-41, 2016 09.
Article in English | MEDLINE | ID: mdl-27495137

ABSTRACT

BACKGROUND: Inappropriate antibiotic use for acute respiratory tract infections is common in primary health care, but distinguishing serious from self-limiting infections is difficult, particularly in low-resource settings. We assessed whether C-reactive protein point-of-care testing can safely reduce antibiotic use in patients with non-severe acute respiratory tract infections in Vietnam. METHOD: We did a multicentre open-label randomised controlled trial in ten primary health-care centres in northern Vietnam. Patients aged 1-65 years with at least one focal and one systemic symptom of acute respiratory tract infection were assigned 1:1 to receive either C-reactive protein point-of-care testing or routine care, following which antibiotic prescribing decisions were made. Patients with severe acute respiratory tract infection were excluded. Enrolled patients were reassessed on day 3, 4, or 5, and on day 14 a structured telephone interview was done blind to the intervention. Randomised assignments were concealed from prescribers and patients but not masked as the test result was used to assist treatment decisions. The primary outcome was antibiotic use within 14 days of follow-up. All analyses were prespecified in the protocol and the statistical analysis plan. All analyses were done on the intention-to-treat population and the analysis of the primary endpoint was repeated in the per-protocol population. This trial is registered under number NCT01918579. FINDINGS: Between March 17, 2014, and July 3, 2015, 2037 patients (1028 children and 1009 adults) were enrolled and randomised. One adult patient withdrew immediately after randomisation. 1017 patients were assigned to receive C-reactive protein point-of-care testing, and 1019 patients were assigned to receive routine care. 115 patients in the C-reactive protein point-of-care group and 72 patients in the routine care group were excluded in the intention-to-treat analysis due to missing primary endpoint. The number of patients who used antibiotics within 14 days was 581 (64%) of 902 patients in the C-reactive protein group versus 738 (78%) of 947 patients in the control group (odds ratio [OR] 0·49, 95% CI 0·40-0·61; p<0·0001). Highly significant differences were seen in both children and adults, with substantial heterogeneity of the intervention effect across the 10 sites (I(2)=84%, 95% CI 66-96). 140 patients in the C-reactive protein group and 137 patients in the routine care group missed the urine test on day 3, 4, or 5. Antibiotic activity in urine on day 3, 4, or 5 was found in 267 (30%) of 877 patients in the C-reactive protein group versus 314 (36%) of 882 patients in the routine treatment group (OR 0·78, 95% CI 0·63-0·95; p=0·015). Time to resolution of symptoms was similar in both groups. Adverse events were rare, with no deaths and a total of 14 hospital admissions (six in the C-reactive protein group and eight in the control group). INTERPRETATION: C-reactive protein point-of-care testing reduced antibiotic use for non-severe acute respiratory tract infection without compromising patients' recovery in primary health care in Vietnam. Health-care providers might have become familiar with the clinical picture of low C-reactive protein, leading to reduction in antibiotic prescribing in both groups, but this would have led to a reduction in observed effect, rather than overestimation. Qualitative analysis is needed to address differences in context in order to implement this strategy to improve rational antibiotic use for patients with acute respiratory infection in low-income and middle-income countries. FUNDING: Wellcome Trust, UK, and Global Antibiotic Resistance Partnership, USA.


Subject(s)
Anti-Bacterial Agents/therapeutic use , C-Reactive Protein/analysis , Inappropriate Prescribing/prevention & control , Point-of-Care Systems/statistics & numerical data , Respiratory Tract Infections/drug therapy , Acute Disease , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Primary Health Care , Respiratory Tract Infections/diagnosis , Vietnam
SELECTION OF CITATIONS
SEARCH DETAIL
...