Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Antonie Van Leeuwenhoek ; 113(7): 863-873, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32130597

ABSTRACT

Many bacteria and archaea produce the polydisperse fructose polymer levan from sucrose upon biofilm formation via extracellular levansucrases (EC 2.4.1.10). We have investigated levansucrase-release and -activities as well as molecular size of the levan formed by the acetic acid bacterium Gluconobacter albidus TMW 2.1191 at varying environmental pH conditions to obtain insight in the ecological role of its constitutively expressed levansucrase and the produced levan. A buffer system was established enabling the recovery of levansucrase-containing supernatants from preincubated cell suspensions at pH 4.3-pH 5.7. The enzyme solutions were used to produce levans at different pH values and sucrose concentrations. Finally, the amounts and size distributions of the produced levans as well as the corresponding levansucrase activities were determined and correlated with each other. The data revealed that the levansucrase was released into the environment independently of its substrate sucrose, and that more levansucrase was released at pH ≥ 5.0. The glucose release and formation of high molecular weight levans (> 3.5 kDa) from 0.1 M initial sucrose was comparable between pH ~ 4.3-5.7 using equal amounts of released levansucrase. Hence, this type of levansucrase appears to be structurally adapted to changes in the extracellular pH and to exhibit a similar total activity over a wide acidic pH range, while it produced higher amounts of larger levan molecules at higher production pH and sucrose concentrations. These findings indicate the physiological adaptation of G. albidus TMW 2.1191 to efficient colonisation of sucrose-rich habitats via released levansucrases despite changing extracellular pH conditions in course of acid formation.


Subject(s)
Fructans/metabolism , Gluconobacter/enzymology , Gluconobacter/metabolism , Hexosyltransferases/metabolism , Sucrose/metabolism , Carbohydrate Metabolism , Fructose/metabolism , Hexosyltransferases/chemistry , Hydrogen-Ion Concentration , Molecular Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...