Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pest Manag Sci ; 80(5): 2306-2313, 2024 May.
Article in English | MEDLINE | ID: mdl-37183217

ABSTRACT

BACKGROUND: Understanding the dynamics of pest immigration into an agroecosystem enables effective and timely management strategies. The pollen beetle (Brassicogethes aeneus) is a primary pest of the inflorescence stages of oilseed rape (Brassica napus). This study investigated the spatial and temporal dynamics of pollen beetle immigration into oilseed rape fields in Denmark and the UK using multiple methods, including optical sensors. RESULTS: In all fields, pollen beetles were found to be aggregated and beetle density was related to plant growth stage, with more beetles occurring on plants after the budding stage than before inflorescence development. Optical sensors were the most efficient monitoring method, recording pollen beetles 2 and 4 days ahead of water traps and counts from plant scouting, respectively. CONCLUSION: Optical sensors are a promising tool for early warning of insect pest immigration. The aggregation pattern of pollen beetles post immigration could be used to precisely target control in oilseed rape crops. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Brassica napus , Coleoptera , Animals , Europe , Pollen , Crops, Agricultural
2.
Sci Rep ; 12(1): 2603, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173221

ABSTRACT

Insect monitoring is critical to improve our understanding and ability to preserve and restore biodiversity, sustainably produce crops, and reduce vectors of human and livestock disease. Conventional monitoring methods of trapping and identification are time consuming and thus expensive. Automation would significantly improve the state of the art. Here, we present a network of distributed wireless sensors that moves the field towards automation by recording backscattered near-infrared modulation signatures from insects. The instrument is a compact sensor based on dual-wavelength infrared light emitting diodes and is capable of unsupervised, autonomous long-term insect monitoring over weather and seasons. The sensor records the backscattered light at kHz pace from each insect transiting the measurement volume. Insect observations are automatically extracted and transmitted with environmental metadata over cellular connection to a cloud-based database. The recorded features include wing beat harmonics, melanisation and flight direction. To validate the sensor's capabilities, we tested the correlation between daily insect counts from an oil seed rape field measured with six yellow water traps and six sensors during a 4-week period. A comparison of the methods found a Spearman's rank correlation coefficient of 0.61 and a p-value = 0.0065, with the sensors recording approximately 19 times more insect observations and demonstrating a larger temporal dynamic than conventional yellow water trap monitoring.


Subject(s)
Automation/methods , Biodiversity , Biological Monitoring/methods , Infrared Rays , Insect Vectors/physiology , Wireless Technology/instrumentation , Animals , Brassica napus/parasitology , Databases as Topic , Rapeseed Oil , Seasons , Weather
3.
J Econ Entomol ; 113(5): 2558-2562, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32804241

ABSTRACT

The three-cornered alfalfa hopper, Spissistilus festinus (Say), was shown to transmit Grapevine red blotch virus (GRBV), the causative agent for Grapevine red blotch disease, in a greenhouse study on grapes. GRBV is a major concern of wine grape growers due to its economic impact on wine quality. Plants in the family Fabaceae are preferred hosts of S. festinus and are commonly planted as cover crops or present in a vineyard's native vegetation. In late winter, during grapevine dormancy, S. festinus migrate into vineyards to feed and reproduce on these cover crop and weed hosts. Tilling vineyard floor vegetation provides growers an opportunity to disrupt the life cycle of early instars that are relatively immobile, reducing the S. festinus first-generation population. Nymphal presence is difficult to detect. First through third instars were not detected in sweep net samples in a 2-yr weekly sampling study, whereas fourth and fifth instars were first found on the same sample date as emerging adults. A degree-day model was developed and successfully predicted when early S. festinus instars are present in the vineyard to aid in exploiting the time period when S. festinus is most susceptible to cultural control measures.


Subject(s)
Geminiviridae , Hemiptera , Vitis , Animals , California , Farms , Plant Diseases
4.
J Econ Entomol ; 113(2): 1037-1042, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31907550

ABSTRACT

There is high demand for accurate insect sampling methods to inform integrated pest management strategies. Despite widespread application, existing sampling methods, such as portable aspirating and sweep netting, can result in overrepresentation of prominent pests, underrepresentation of natural enemies, and damage to plants. In this study, we test a novel device for insect sampling via anesthetization. Specifically, we test the effect of CO2 (application pressure and duration of exposure) on Lygus hesperus Knight (Hemiptera: Miridae) anesthetization in the laboratory and on insect community density in a strawberry agroecosystem. Carbon dioxide application proves an effective means of anesthetization compared to negative controls, and an increase in net CO2 exposure results in a decrease in time until L. hesperus anesthetization. Field results indicate the CO2 method collects more parasitoids and thrips than a portable aspirator, and at the 50 PSI application pressure and 15-s exposure, the CO2 method results in a comparable number of pests collected as the research standard, a portable aspirator with 8-s aspiration time. Benefits of the CO2 method include minimal plant damage, highly explicit spatial and temporal data, and scalability.


Subject(s)
Fragaria , Hemiptera , Heteroptera , Thysanoptera , Animals , Carbon Dioxide , Plants
5.
J Econ Entomol ; 112(3): 1138-1144, 2019 05 22.
Article in English | MEDLINE | ID: mdl-30796773

ABSTRACT

The three-cornered alfalfa hopper, Spissistilus festinus (Say) was shown to transmit Grapevine red blotch virus (GRBV) in a greenhouse study. GRBV is the causal agent of Grapevine Red Blotch Disease, which reduces the quality of wine produced from infected grapes. Due to the general lack of prior concern regarding S. festinus on grapevines, the biology of this species in vineyards has been largely unknown. A 2-yr study with weekly sampling was conducted in a Californian vineyard to increase the knowledge of S. festinus seasonal dynamics and distribution. The overwintering S. festinus adults were first captured in the vineyard before bud break. Detection of late-instar S. festinus nymphs, the first in-field adult generation, and grape anthesis occurred concurrently in 2016 and 2017. Two in-field S. festinus generations were documented by peaks in sweep net sampling of vineyard groundcover in 2016, whereas only one generation was observed in 2017. There appears to be an inverse relationship between the number of S. festinus adults sampled on ground cover and the number of girdles in the grapevine canopy. Spissistilus festinus exhibited an aggregated distribution in the vineyard and a significant edge effect. Results from this study will contribute to the development of sampling and management guidelines and determine timing of control measures to reduce populations of S. festinus within vineyards to minimize the virus spread.


Subject(s)
Geminiviridae , Hemiptera , Vitis , Animals , Farms , Plant Diseases , Seasons
6.
J Econ Entomol ; 111(2): 732-740, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29474690

ABSTRACT

Emerald ash borer (EAB), Agrilus planipennis (Fairmaire; Coleoptera: Buprestidae), is decimating ash trees (Fraxinus spp.) in North America. Combatting EAB includes the use of insecticides; however, reported insecticide efficacy varies among published studies. This study assessed the effects of season of application, insecticide active ingredient, and insecticide application rate on green ash (Fraxinus pennsylvanica Marsh.) (Lamiales: Oleaceae) canopy decline caused by EAB over a 5- to 7-yr interval. Data suggested that spring treatments were generally more effective in reducing canopy decline than fall treatments, but this difference was not statistically significant. Lowest rates of decline (<5% over 5 yr) were observed in trees treated with imidacloprid injected annually in the soil during spring (at the higher of two tested application rates; 1.12 g/cm diameter at 1.3 m height) and emamectin benzoate injected biennially into the stem. All tested insecticides (dinotefuran, emamectin benzoate, and imidacloprid) under all tested conditions significantly reduced the rate of increase of dieback.


Subject(s)
Coleoptera , Guanidines , Insect Control , Insecticides , Ivermectin/analogs & derivatives , Neonicotinoids , Nitro Compounds , Soil , Animals , Dose-Response Relationship, Drug , Fraxinus/growth & development , Illinois , Seasons
7.
J Econ Entomol ; 109(5): 2027-31, 2016 10.
Article in English | MEDLINE | ID: mdl-27551149

ABSTRACT

Increases in severity and frequency of drought periods, average global temperatures, and more erratic fluctuations in rainfall patterns due to climate change are predicted to have a dramatic impact on agricultural production systems. Insect pest populations in agricultural and horticultural systems are also expected to be impacted, both in terms of their spatial and temporal distributions and in their status as pest species. In this opinion-based article, we discuss how indirect effects of drought may adversely affect the performance of systemic insecticides and also lead to increased risk of insect pests developing behavioral insecticide resistance. We hypothesize that more pronounced drought will decrease uptake and increase the magnitude of nonuniform translocation of systemic insecticides within treated crop plants, and that may have two concurrent consequences: 1) reduced pesticide performance, and 2) increased likelihood of insect pests evolving behavioral insecticide resistance. Under this scenario, pests that can sense and avoid acquisition of lethal dosages of systemic insecticides within crop plants will have a selective advantage. This may lead to selection for insect behavioral avoidance, so that insects predominantly feed and oviposit on portions of crop plants with low concentration of systemic insecticide. Limited research has been published on the effect of environmental variables, including drought, on pesticide performance, but we present and discuss studies that support the hypothesis described above. In addition, we wish to highlight the importance of studying the many ways environmental factors can affect, directly and indirectly, both the performance of insecticides and the risk of target insect pests developing resistance.


Subject(s)
Biological Evolution , Droughts , Insecta/drug effects , Insecticide Resistance , Insecticides/pharmacology , Animals , Behavior, Animal , Climate Change , Crops, Agricultural/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...