Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(32): 78182-78197, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37266774

ABSTRACT

This research studies the impacts of iron oxide nanoparticles (FeONPs) on alleviating the toxic effects of cadmium (Cd), lead (Pb), and zinc (Zn) on summer savory (Satureja hortensis L.). Different types of soil additives, including bare and carboxymethylcellulose (CMC)-supported hematite (α-Fe2O3), goethite (α-FeOOH), and magnetite (Fe3O4), were applied at three rates (0, 0.25, and 0.5% w/w) to a Cd, Pb, and Zn-contaminated soil sample. The experimental results showed that the application of FeONPs increased plant height, dry weights of shoot and root, and yield and content of essential oil. Bare and CMC-supported FeONPs increased the content of K, P, and Fe in the aerial parts of summer savory. However, these soil additives reduced the contents of Cd, Pb, and Zn in plant tissues. CMC-supported FeONPs proved to be more efficient additives in diminishing the toxic effects of Cd, Pb, and Zn in summer savory compared to their bare forms. Bare and CMC-supported goethite NPs were able to restrict the uptake of Cd, Pb, and Zn by summer savory roots in the metal-contaminated soil. The application of CMC-supported goethite at an application dose of 0.5% (w/w) increased shoot dry weight, shoot concentrations of K, P, and Fe, and yield of essential oil by about 62.6, 76.6, 77.1, 210, and 230%, respectively. Conversely, they reduced shoot concentrations of Cd, Pb, and Zn by about 64.6, 68.7, and 40.6%, respectively, compared to the control. These are significant results and indicate that CMC-supported goethite is likely to be the most effective soil additive in diminishing the toxicity of Cd, Pb, and Zn to metal-stressed summer savory.


Subject(s)
Nanoparticles , Oils, Volatile , Satureja , Soil Pollutants , Cadmium/analysis , Zinc/analysis , Carboxymethylcellulose Sodium , Lead , Soil , Soil Pollutants/analysis
2.
Arch Environ Contam Toxicol ; 82(1): 72-81, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34750655

ABSTRACT

A greenhouse experiment aimed to assess the effects of poultry manure, sorghum, and clover residues (0 and 15 g kg-1) on the zinc (Zn) bioavailable fraction in contaminated calcareous soil using two chemical assays, including diffusion gradient in thin-films (DGT) and diethylene triamine pentaacetic acid-triethanolamine (DTPA-TEA), and a bioassay with corn (Zea mase L.). The results showed that poultry manure, clover, and sorghum residues application increased dissolved organic carbon (DOC) by 53.6 and 36.1, and 9.2%, respectively, and decreased soil pH by 0.42, 0.26, and 0.06 units, respectively compared to unamended soil. These changes resulted in increases of Zn effective concentration (CE) and DTPA-Zn, and plant Zn concentration as observed by the increase in exchangeable form of Zn. In the sorghum residues-amended soils, CE-Zn decreased by 29.5% compared to other treatments. The best correlations between corn metal concentrations and soil metal bioavailability were obtained for CE-Zn using the DGT technique, which also provided the best Zn bioavailability estimate. It is concluded that sorghum residues could be used to reduce the phytotoxicity risk of Zn in calcareous contaminated soil, and the DTPA method is the less robust indicator of Zn bioavailability than the DGT technique.


Subject(s)
Manure , Soil Pollutants , Animals , Dissolved Organic Matter , Poultry , Soil , Soil Pollutants/analysis , Zinc/analysis
3.
Chemosphere ; 261: 128123, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33113646

ABSTRACT

A pot experiment was carried out to evaluate the efficiency of six types of non-stabilised and Na-carboxymethylcellulose (CMC)-stabilised iron oxide nanoparticles (α-FeOOH, α-Fe2O3, and Fe3O4) on the immobilisation of cobalt (Co) in a soil spiked with different concentrations of it (5, 25, 65, 125, 185 mg kg-1). Amendments were added to soil samples at the rate of 0.5%, and the samples incubated for 60-days. The addition of amendments significantly decreased the concentrations of DTPA-Co and MgCl2-Co, compared with the unamended control. The highest decrease in concentration of DTPA-Co and MgCl2-Co was obtained by the application of CMC-stabilised Fe3O4 (MC) when the concentration of soil total Co was low (5 and 25 mg kg-1) and by the use of CMC-stabilised α-FeOOH (GC) when the concentration of soil total Co was high (65, 125, and 185 mg kg-1), as compared to the control. CMC-stabilised iron oxide nanoparticles were more effective than non-stabilised nanoparticles in the immobilisation of Co. To investigate the effectiveness of iron oxide amendments on the chemical species of Co in the soil spiked with 65 mg kg-1 of this metal, sequential extraction was performed. The concentration of EXCH (exchangeable) and CARB (carbonate) bound fractions decreased significantly after treatment by different amendments. In particular, GC reduced the concentration of EXCH and CARB bound fractions by 20.87, and 17.52%, respectively, compared with the control. Also amendments significantly increased the concentration of FeMn-OX (Fe-Mn oxides), and OM (organic matter) bound, and RES (residual) fractions.


Subject(s)
Carboxymethylcellulose Sodium/chemistry , Cobalt/analysis , Environmental Restoration and Remediation/methods , Ferric Compounds/chemistry , Nanoparticles/chemistry , Soil Pollutants/analysis , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...