Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38659916

ABSTRACT

Many people, and particularly those diagnosed with ADHD, report difficulties maintaining attention and proneness to distraction during classroom learning. However, the behavioral, neural and physiological basis of attention in realistic learning contexts is not well understood, since current clinical and scientific tools used for evaluating and quantifying the constructs of "distractibility" and "inattention", are removed from the real-life experience in organic classrooms. Here we introduce a novel Virtual Reality (VR) platform for studying students' brain activity and physiological responses as they immerse in realistic frontal classroom learning. Using this approach, we studied whether adults with and without ADHD (N=49) exhibit differences in neurophysiological metrics associated with sustained attention, such as speech-tracking of the teacher's voice, power of alpha-oscillations and levels of arousal, as well as responses to potential disturbances by background sound-events in the classroom. Under these ecological conditions, we find that adults with ADHD exhibit higher auditory neural response to background sounds relative to their control-peers, which also contributed to explaining variance in the severity of ADHD symptoms, together with higher power of alpha-oscillations and more frequent gaze-shifts around the classroom. These results are in-line with higher sensitivity to irrelevant stimuli in the environment and increased mind-wandering/boredom. At the same time, both groups exhibited similar learning outcomes and showed similar neural tracking of the teacher's speech. This suggests that in this context, attention may not operate as a zero-sum game and that allocating some resources to irrelevant stimuli does not always detract from performing the task at hand. Given the dire need for more objective, dimensional and ecologically-valid measures of attention and its real-life deficits, this work provides new insights into the neurophysiological manifestations of attention and distraction experienced in real-life contexts, while challenging some prevalent notions regarding the nature of attentional challenges experienced by those with ADHD.

2.
J Exp Psychol Gen ; 152(12): 3403-3417, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37589702

ABSTRACT

Distractibility determines the propensity to have one's attention captured by irrelevant information; it relies on a balance between voluntary and involuntary attention. We report a cross-sectional study that uses the competitive attention test to characterize patterns of attention across the adult life span from 21 to 86 years old. Several distractibility components were measured in 186 participants distributed within seven age groups. Results indicate that distractibility components follow distinct trajectories with aging: Voluntary orienting remains stable from 21 to 86 years old, sustained attention decreases after 30 years old, distraction progressively increases between 26 and 86 years old, and impulsivity is lower in older compared to younger adults. Increased distractibility in older age thus seems to result from a dominance of involuntary over voluntary attention processes, whose detrimental effect on performance is partly compensated by enhanced motor control. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Subject(s)
Aging , Cognition Disorders , Adult , Humans , Aged , Young Adult , Middle Aged , Aged, 80 and over , Cross-Sectional Studies , Attention
3.
J Exp Child Psychol ; 227: 105584, 2023 03.
Article in English | MEDLINE | ID: mdl-36413871

ABSTRACT

In children, the ability to attend to relevant auditory information and ignore distracting information is crucial for learning and educational achievement. Distractibility, the propensity to pay attention to irrelevant information, depends on multiple components of cognition (voluntary attention orienting, sustained attention, distraction resulting from the capture of attention by a distractor, phasic arousal, impulsivity, and motor control) that may mature at different ages. Here, we used the Competitive Attention Test (CAT) to measure these components in children aged 3 to 5 years. Our goal was to characterize changes in the efficiency of attention during the preschool period and to determine whether distractibility varies as a function of socioeconomic status (SES). All 3-year-olds (n = 14) and some 4- and 5-year-olds (n = 21) needed to be excluded from the sample due to noncompliance with instructions, suggesting that the CAT might not be suitable for children with poorly developed skills in sustained attention. Among 4- and 5-year-olds who completed the CAT (n = 71), sustained attention improved with age, whereas voluntary attention orienting remained immature. Independent of age, task-irrelevant sounds induced distraction, phasic arousal, and impulsivity. There was no relationship between SES and children's distraction. Finally, children from lower SES backgrounds showed reduced sustained attention abilities and increased impulsivity. Taken together, these findings suggest that distractibility is still developing during the preschool period and is likely to vary depending on the SES background of a child's family.


Subject(s)
Social Class , Sound , Child, Preschool , Humans , Acoustic Stimulation/methods , Learning , Cognition
4.
Heliyon ; 8(6): e09631, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35734572

ABSTRACT

Numerous studies showed that task-evoked pupil dilation is an objective marker of cognitive activity and listening effort. However, these studies differ in their experimental and analysis methods. Whereas most studies focus on a single method, the present study sought to compare different pupil-dilation data analysis methods, including different normalization techniques, baseline periods, and baseline durations, in order to assess their influence on the outcomes of pupillometry results obtained in an auditory task. To that purpose, we used pupillometry data recorded in response to words in noise in hearing-impaired individuals. The start-time of the baseline relative to stimulus timing turned out to have a significant influence on conclusions. In particular, a significant interaction in the effects of signal-to-noise ratio and hearing-aid use on pupil dilation was observed when the baseline period used started early relative to the word-an effect likely related to anticipatory, pre-stimulus cognitive processes, such as attention mobilization. This was the case even with only correct-response trials included in analyses, so that any confounding effect of performance in the word-repetition task was eliminated. Different normalization methods and baseline durations showed similar results, however the use of z-score transformation homogenized variability across conditions without affecting the qualitative aspect of the results. The consistency of results regardless of normalization methods, and the fact that differences in pupil dilation and subjective measures of listening effort could be observed despite perfect performance in the task, underlines the relevance of pupillometry as an objective measure of listening effort.

5.
Eur J Neurosci ; 55(5): 1215-1231, 2022 03.
Article in English | MEDLINE | ID: mdl-35112420

ABSTRACT

Attention operates through top-down and bottom-up processes, and a balance between these processes is crucial for daily tasks. Imperilling such balance could explain ageing-associated attentional problems such as exacerbated distractibility. In this study, we aimed to characterize this enhanced distractibility by investigating the impact of ageing upon event-related components associated with top-down and bottom-up attentional processes. MEG and EEG data were acquired from 14 older and 14 younger healthy adults while performing a task that conjointly evaluates top-down and bottom-up attention. Event-related components were analysed on sensor and source levels. In comparison with the younger group, the older mainly displayed (1) reduced target anticipation processes (reduced CMV), (2) increased early target processing (larger P50 but smaller N1) and (3) increased processing of early distracting sounds (larger N1 but reduced P3a), followed by a (4) prolonged reorientation towards the main task (larger RON). Taken together, our results suggest that the enhanced distractibility in ageing could stem from top-down deficits, in particular from reduced inhibitory and reorientation processes.


Subject(s)
Aging , Electroencephalography , Adult , Humans , Reaction Time
6.
Atten Percept Psychophys ; 84(3): 739-759, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35106682

ABSTRACT

You are on the phone, walking down a street. This daily situation calls for selective attention, allowing you to ignore surrounding irrelevant sounds, while trying to encode in memory the relevant information from the phone. Attention and memory are indeed two cognitive functions that are interacting constantly. However, their interaction is not yet well characterized during sound-sequence encoding. We independently manipulated both selective attention and working memory in a delayed-matching-to-sample of two tone-series, played successively in one ear. During the first melody presentation (memory encoding), weakly or highly distracting melodies were played in the other ear. Detection of the difference between the two comparison melodies could be easy or difficult, requiring low- or high-precision encoding, i.e., low or high memory load. Sixteen non-musician and 16 musician participants performed this new task. As expected, both groups of participants were less accurate in the difficult memory task and in difficult-to-ignore distractor conditions. Importantly, an interaction between memory-task difficulty and distractor difficulty was found in both groups. Non-musicians presented less difference between easy and difficult-to-ignore distractors in the difficult than in the easy memory task. On the contrary, musicians, with better performance than non-musicians, showed a greater difference between easy and difficult-to-ignore distractors in the difficult than in the easy memory task. In a second experiment including trials without a distractor, we could show that these effects are in line with the cognitive load theory. Taken together, these results speak for shared cognitive resources between working memory and attention during sound-sequence encoding.


Subject(s)
Attention , Memory, Short-Term , Cognition , Humans , Sound
7.
J Sleep Res ; 31(5): e13557, 2022 10.
Article in English | MEDLINE | ID: mdl-35102655

ABSTRACT

Several factors influencing dream recall frequency (DRF) have been identified, but some remain poorly understood. One way to study DRF is to compare cognitive processes in low and high dream recallers (LR and HR). According to the arousal-retrieval model, long-term memory encoding of a dream requires wakefulness while its multisensory short-term memory is still alive. Previous studies showed contradictory results concerning short-term memory differences between LR and HR. It has also been found that extreme DRFs are associated with different electrophysiological traits related to attentional processes. However, to date, there is no evidence for attentional differences between LR and HR at the behavioural level. To further investigate attention and working memory in HR and LR, we used a newly-developed challenging paradigm called "MEMAT" (for MEMory and ATtention), which allows the study of selective attention and working memory interaction during memory encoding of non-verbal auditory stimuli. We manipulated the difficulties of the distractor to ignore and of the memory task. The performance of the two groups were not differentially impacted by working memory load. However, HR were slower and less accurate in the presence of a hard rather than easy to-ignore distractor, while LR were much less impacted by the distractor difficulty. Therefore, we show behavioural evidence towards less resistance to hard-to-ignore distractors in HR. Using a challenging task, we show for the first time, attentional differences between HR and LR at the behavioural level. The impact of auditory attention and working memory on dream recall is discussed.


Subject(s)
Memory, Short-Term , Mental Recall , Attention/physiology , Humans , Memory, Short-Term/physiology , Mental Recall/physiology , Wakefulness/physiology
8.
Cereb Cortex ; 32(17): 3752-3762, 2022 08 22.
Article in English | MEDLINE | ID: mdl-34902861

ABSTRACT

Event-related potentials (ERPs) associated with the involuntary orientation of (bottom-up) attention toward an unexpected sound are of larger amplitude in high dream recallers (HR) than in low dream recallers (LR) during passive listening, suggesting different attentional functioning. We measured bottom-up and top-down attentional performance and their cerebral correlates in 18 HR (11 women, age = 22.7 years, dream recall frequency = 5.3 days with a dream recall per week) and 19 LR (10 women, age = 22.3, DRF = 0.2) using EEG and the Competitive Attention Task. Between-group differences were found in ERPs but not in behavior. The results show that HR present larger ERPs to distracting sounds than LR even during active listening, arguing for enhanced bottom-up processing of irrelevant sounds. HR also presented larger contingent negative variation during target expectancy and P3b to target sounds than LR, speaking for an enhanced recruitment of top-down attention. The attentional balance seems preserved in HR since their performances are not altered, but possibly at a higher resource cost. In HR, increased bottom-up processes would favor dream recall through awakening facilitation during sleep and enhanced top-down processes may foster dream recall through increased awareness and/or short-term memory stability of dream content.


Subject(s)
Evoked Potentials , Sleep , Adult , Auditory Perception , Electroencephalography , Female , Humans , Memory, Short-Term , Mental Recall , Young Adult
9.
Neuron ; 109(13): 2047-2074, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34237278

ABSTRACT

Despite increased awareness of the lack of gender equity in academia and a growing number of initiatives to address issues of diversity, change is slow, and inequalities remain. A major source of inequity is gender bias, which has a substantial negative impact on the careers, work-life balance, and mental health of underrepresented groups in science. Here, we argue that gender bias is not a single problem but manifests as a collection of distinct issues that impact researchers' lives. We disentangle these facets and propose concrete solutions that can be adopted by individuals, academic institutions, and society.


Subject(s)
Gender Equity , Research Personnel , Sexism , Universities/organization & administration , Female , Humans , Male , Research/organization & administration
10.
Child Dev ; 92(4): e716-e737, 2021 07.
Article in English | MEDLINE | ID: mdl-33825204

ABSTRACT

Distractibility is the propensity to behaviorally react to irrelevant information. Although children are more distractible the younger they are, the precise contribution of attentional and motor components to distractibility and their developmental trajectories have not been characterized yet. We used a new behavioral paradigm to identify the developmental dynamics of components contributing to distractibility in a large cohort of French participants balanced, between age groups, in gender and socioeconomic status (N = 352; age: 6-25). Results reveal that each measure of these components, namely voluntary attention, distraction, impulsivity, and motor control, present a distinct maturational timeline. In young children, increased distractibility is mostly the result of reduced sustained attention capacities and enhanced distraction, whereas in teenagers, it is the result of decreased motor control and increased impulsivity.


Subject(s)
Attention , Impulsive Behavior , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Humans , Reaction Time , Young Adult
11.
Brain Topogr ; 34(3): 384-401, 2021 05.
Article in English | MEDLINE | ID: mdl-33606142

ABSTRACT

A growing number of studies investigate brain anatomy in migraine using voxel- (VBM) and surface-based morphometry (SBM), as well as diffusion tensor imaging (DTI). The purpose of this article is to identify consistent patterns of anatomical alterations associated with migraine. First, 19 migraineurs without aura and 19 healthy participants were included in a brain imaging study. T1-weighted MRIs and DTI sequences were acquired and analyzed using VBM, SBM and tract-based spatial statistics. No significant alterations of gray matter (GM) volume, cortical thickness, cortical gyrification, sulcus depth and white-matter tract integrity could be observed. However, migraineurs displayed decreased white matter (WM) volume in the left superior longitudinal fasciculus. Second, a systematic review of the literature employing VBM, SBM and DTI was conducted to investigate brain anatomy in migraine. Meta-analysis was performed using Seed-based d Mapping via permutation of subject images (SDM-PSI) on GM volume, WM volume and cortical thickness data. Alterations of GM volume, WM volume, cortical thickness or white-matter tract integrity were reported in 72%, 50%, 56% and 33% of published studies respectively. Spatial distribution and direction of the disclosed effects were highly inconsistent across studies. The SDM-PSI analysis revealed neither significant decrease nor significant increase of GM volume, WM volume or cortical thickness in migraine. Overall there is to this day no strong evidence of specific brain anatomical alterations reliably associated to migraine. Possible explanations of this conflicting literature are discussed. Trial registration number: NCT02791997, registrated February 6th, 2015.


Subject(s)
Migraine Disorders , White Matter , Brain/diagnostic imaging , Diffusion Tensor Imaging , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Migraine Disorders/diagnostic imaging , White Matter/diagnostic imaging
12.
Sci Rep ; 10(1): 13430, 2020 08 10.
Article in English | MEDLINE | ID: mdl-32778710

ABSTRACT

Attention and saccadic eye movements are critical components of visual perception. Recent studies proposed the hypothesis of a tight coupling between saccadic adaptation (SA) and attention: SA increases the processing speed of unpredictable stimuli, while increased attentional load boosts SA. Moreover, their cortical substrates partially overlap. Here, we investigated for the first time whether this coupling in the reactive/exogenous modality is specific to the orienting system of attention. We studied the effect of adaptation of reactive saccades (RS), elicited by the double-step paradigm, on exogenous orienting, measured using a Posner-like detection paradigm. In 18 healthy subjects, the attentional benefit-the difference in reaction time to targets preceded by informative versus uninformative cues-in a control exposure condition was subtracted from that of each adaptation exposure condition (backward and forward); then, this cue benefit difference was compared between the pre- and post-exposure phases. We found that, the attentional benefit significantly increased for cued-targets presented in the left hemifield after backward adaptation and for cued-targets presented in the right hemifield after forward adaptation. These findings provide strong evidence in humans for a coupling between RS adaptation and attention, possibly through the activation of a common neuronal pool.


Subject(s)
Attention/physiology , Orientation, Spatial/physiology , Saccades/physiology , Adaptation, Physiological , Adult , Cues , Female , Healthy Volunteers , Humans , Male , Orientation/physiology , Photic Stimulation/methods , Reaction Time/physiology , Visual Perception/physiology
13.
Clin Neurophysiol ; 131(8): 1933-1946, 2020 08.
Article in English | MEDLINE | ID: mdl-32619799

ABSTRACT

OBJECTIVES: To evaluate alterations of top-down and/or bottom-up attention in migraine and their cortical underpinnings. METHODS: 19 migraineurs between attacks and 19 matched control participants performed a task evaluating jointly top-down and bottom-up attention, using visually-cued target sounds and unexpected task-irrelevant distracting sounds. Behavioral responses and magneto- and electro-encephalography signals were recorded. Event-related potentials and fields were processed and source reconstruction was applied to event-related fields. RESULTS: At the behavioral level, neither top-down nor bottom-up attentional processes appeared to be altered in migraine. However, migraineurs presented heightened evoked responses following distracting sounds (orienting component of the N1 and Re-Orienting Negativity, RON) and following target sounds (orienting component of the N1), concomitant to an increased recruitment of the right temporo-parietal junction. They also displayed an increased effect of the cue informational value on target processing resulting in the elicitation of a negative difference (Nd). CONCLUSIONS: Migraineurs appear to display increased bottom-up orienting response to all incoming sounds, and an enhanced recruitment of top-down attention. SIGNIFICANCE: The interictal state in migraine is characterized by an exacerbation of the orienting response to attended and unattended sounds. These attentional alterations might participate to the peculiar vulnerability of the migraine brain to all incoming stimuli.


Subject(s)
Attention , Auditory Perception , Evoked Potentials, Auditory , Migraine Disorders/physiopathology , Adolescent , Adult , Electroencephalography , Female , Humans , Magnetoencephalography , Male , Middle Aged , Parietal Lobe/physiopathology , Temporal Lobe/physiopathology
14.
PLoS One ; 15(3): e0229334, 2020.
Article in English | MEDLINE | ID: mdl-32163441

ABSTRACT

Attention operates through top-down (TD) and bottom-up (BU) mechanisms. Recently, it has been shown that slow (alpha) frequencies index facilitatory and suppressive mechanisms of TD attention and faster (gamma) frequencies signal BU attentional capture. Ageing is characterized by increased behavioral distractibility, resulting from either a reduced efficiency of TD attention or an enhanced triggering of BU attention. However, only few studies have investigated the impact of ageing upon the oscillatory activities involved in TD and BU attention. MEG data were collected from 14 elderly and 14 matched young healthy human participants while performing the Competitive Attention Task. Elderly participants displayed (1) exacerbated behavioral distractibility, (2) altered TD suppressive mechanisms, indexed by a reduced alpha synchronization in task-irrelevant regions, (3) less prominent alpha peak-frequency differences between cortical regions, (4) a similar BU system activation indexed by gamma activity, and (5) a reduced activation of lateral prefrontal inhibitory control regions. These results show that the ageing-related increased distractibility is of TD origin.


Subject(s)
Aging/physiology , Alpha Rhythm/physiology , Anticipation, Psychological/physiology , Attention/physiology , Brain/physiology , Gamma Rhythm/physiology , Reaction Time/physiology , Adult , Aged , Female , Humans , Male , Middle Aged , Photic Stimulation , Young Adult
15.
Cereb Cortex ; 30(2): 696-707, 2020 03 21.
Article in English | MEDLINE | ID: mdl-31219542

ABSTRACT

Auditory attention operates through top-down (TD) and bottom-up (BU) mechanisms that are supported by dorsal and ventral brain networks, respectively, with the main overlap in the lateral prefrontal cortex (lPFC). A good TD/BU balance is essential to be both task-efficient and aware of our environment, yet it is rarely investigated. Oscillatory activity is a novel method to probe the attentional dynamics with evidence that gamma activity (>30 Hz) could signal BU processing and thus would be a good candidate to support the activation of the ventral BU attention network. Magnetoencephalography data were collected from 21 young adults performing the competitive attention task, which enables simultaneous investigation of BU and TD attentional mechanisms. Distracting sounds elicited an increase in gamma activity in regions of the BU ventral network. TD attention modulated these gamma responses in regions of the inhibitory cognitive control system: the medial prefrontal and anterior cingulate cortices. Finally, distracting-sound-induced gamma activity was synchronous between the auditory cortices and several distant brain regions, notably the lPFC. We provide novel insight into the role of gamma activity 1) in supporting the activation of the ventral BU attention network and 2) in subtending the TD/BU attention balance in the PFC.


Subject(s)
Attention/physiology , Auditory Perception/physiology , Gamma Rhythm , Parietal Lobe/physiology , Prefrontal Cortex/physiology , Acoustic Stimulation , Adult , Auditory Cortex/physiology , Female , Humans , Magnetoencephalography , Male , Neural Pathways/physiology , Young Adult
16.
Sci Rep ; 9(1): 17770, 2019 11 28.
Article in English | MEDLINE | ID: mdl-31780727

ABSTRACT

To what extent oculomotor and attention systems are linked remains strongly debated. Previous studies suggested that saccadic adaptation, a well-studied model of oculomotor plasticity, and orienting of attention rely on overlapping networks in the parietal cortex and can functionally interact. Using a Posner-like paradigm in healthy human subjects, we demonstrate for the first time that saccadic adaptation boosts endogenous attention orienting. Indeed, the discrimination of perifoveal targets benefits more from central cues after backward adaptation of leftward voluntary saccades than after a control saccade task. We propose that the overlap of underlying neural networks actually consists of neuronal populations co-activated by oculomotor plasticity and endogenous attention deployed perifoveally. The functional coupling demonstrated here plaids for conceptual models not belonging to the framework of the premotor theory of attention as the latter has been rejected precisely for this voluntary/endogenous modality. These results also open new perspective for rehabilitation of visuo-attentional deficits.


Subject(s)
Attention , Orientation , Saccades , Adult , Female , Humans , Male , Nerve Net/physiology , Parietal Lobe/physiology , Visual Perception , Young Adult
17.
Cereb Cortex ; 29(9): 3606-3617, 2019 08 14.
Article in English | MEDLINE | ID: mdl-30295717

ABSTRACT

Attention and saccadic adaptation (SA) are critical components of visual perception, the former enhancing sensory processing of selected objects, the latter maintaining the eye movements accuracy toward them. Recent studies propelled the hypothesis of a tight functional coupling between these mechanisms, possibly due to shared neural substrates. Here, we used magnetoencephalography to investigate for the first time the neurophysiological bases of this coupling and of SA per se. We compared visual discrimination performance of 12 healthy subjects before and after SA. Eye movements and magnetic signals were recorded continuously. Analyses focused on gamma band activity (GBA) during the pretarget period of the discrimination and the saccadic tasks. We found that GBA increases after SA. This increase was found in the right hemisphere for both postadaptation saccadic and discrimination tasks. For the latter, GBA also increased in the left hemisphere. We conclude that oculomotor plasticity involves GBA modulation within an extended neural network which persists after SA, suggesting a possible role of gamma oscillations in the coupling between SA and attention.


Subject(s)
Adaptation, Physiological , Attention/physiology , Brain/physiology , Gamma Rhythm , Psychomotor Performance/physiology , Saccades , Visual Perception/physiology , Adult , Discrimination, Psychological/physiology , Eye Movement Measurements , Female , Humans , Magnetoencephalography , Male
18.
Neuroimage ; 185: 164-180, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30336252

ABSTRACT

The P3a observed after novel events is an event-related potential comprising an early fronto-central phase and a late fronto-parietal phase. It has classically been considered to reflect the attention processing of distracting stimuli. However, novel sounds can lead to behavioral facilitation as much as behavioral distraction. This illustrates the duality of the orienting response which includes both an attentional and an arousal component. Using a paradigm with visual or auditory targets to detect and irrelevant unexpected distracting sounds to ignore, we showed that the facilitation effect by distracting sounds is independent of the target modality and endures more than 1500 ms. These results confirm that the behavioral facilitation observed after distracting sounds is related to an increase in unspecific phasic arousal on top of the attentional capture. Moreover, the amplitude of the early phase of the P3a to distracting sounds positively correlated with subjective arousal ratings, contrary to other event-related potentials. We propose that the fronto-central early phase of the P3a would index the arousing properties of distracting sounds and would be linked to the arousal component of the orienting response. Finally, we discuss the relevance of the P3a as a marker of distraction.


Subject(s)
Attention/physiology , Brain/physiology , Event-Related Potentials, P300/physiology , Acoustic Stimulation , Adult , Electroencephalography , Female , Humans , Male , Young Adult
19.
eNeuro ; 5(4)2018.
Article in English | MEDLINE | ID: mdl-30225355

ABSTRACT

Anticipatory attention results in enhanced response to task-relevant stimulus, and reduced processing of unattended input, suggesting the deployment of distinct facilitatory and suppressive mechanisms. α Oscillations are a suitable candidate for supporting these mechanisms. We aimed to examine the role of α oscillations, with a special focus on peak frequencies, in facilitatory and suppressive mechanisms during auditory anticipation, within the auditory and visual regions. Magnetoencephalographic (MEG) data were collected from fourteen healthy young human adults (eight female) performing an auditory task in which spatial attention to sounds was manipulated by visual cues, either informative or not of the target side. By incorporating uninformative cues, we could delineate facilitating and suppressive mechanisms. During anticipation of a visually-cued auditory target, we observed a decrease in α power around 9 Hz in the auditory cortices; and an increase around 13 Hz in the visual regions. Only this power increase in high α significantly correlated with behavior. Importantly, within the right auditory cortex, we showed a larger increase in high α power when attending an ipsilateral sound; and a stronger decrease in low α power when attending a contralateral sound. In summary, we found facilitatory and suppressive attentional mechanisms with distinct timing in task-relevant and task-irrelevant brain areas, differentially correlated to behavior and supported by distinct α sub-bands. We provide new insight into the role of the α peak-frequency by showing that anticipatory attention is supported by distinct facilitatory and suppressive mechanisms, mediated in different low and high sub-bands of the α rhythm, respectively.


Subject(s)
Alpha Rhythm/physiology , Anticipation, Psychological/physiology , Attention/physiology , Auditory Cortex/physiology , Auditory Perception/physiology , Functional Laterality/physiology , Visual Cortex/physiology , Adult , Cues , Female , Humans , Magnetoencephalography , Male , Visual Perception/physiology , Young Adult
20.
J Neurodev Disord ; 9: 13, 2017.
Article in English | MEDLINE | ID: mdl-28396700

ABSTRACT

BACKGROUND: Individuals with autism spectrum disorder (ASD) show a relative indifference to the human voice. Accordingly, and contrarily to their typically developed peers, adults with autism do not show a preferential response to voices in the superior temporal sulcus; this lack of voice-specific response was previously linked to atypical processing of voices. In electroencephalography, a slow event-related potential (ERP) called the fronto-temporal positivity to voice (FTPV) is larger for vocal than for non-vocal sounds, resulting in a voice-sensitive response over right fronto-temporal sites. Here, we investigated the neurophysiological correlates of voice perception in children with and without ASD. METHODS: Sixteen children with autism and 16 age-matched typically developing children heard vocal (speech and non-speech) and non-vocal sounds while their electroencephalographic activity was recorded; overall IQ was smaller in the group of children with ASD. ERP amplitudes were compared using non-parametric statistical tests at each electrode and in successive 20-ms time windows. Within each group, differences between conditions were assessed using a non-parametric Quade test between 0 and 400 ms post-stimulus. Inter-group comparisons of ERP amplitudes were performed using non-paired Kruskal-Wallis tests between 140 and 180 ms post-stimulus. RESULTS: Typically developing children showed the classical voice-sensitive response over right fronto-temporal electrodes, for both speech and non-speech vocal sounds. Children with ASD did not show a preferential response to vocal sounds. Inter-group analysis showed no difference in the processing of vocal sounds, both speech and non-speech, but significant differences in the processing of non-vocal sounds over right fronto-temporal sites. CONCLUSIONS: Our results demonstrate a lack of voice-preferential response in children with autism spectrum disorders. In contrast to observations in adults with ASD, the lack of voice-preferential response was attributed to an atypical response to non-vocal sounds, which was overall more similar to the event-related potentials evoked by vocal sounds in both groups. This result suggests atypical maturation processes in ASD impeding the specialization of temporal regions in voice processing.

SELECTION OF CITATIONS
SEARCH DETAIL
...