Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 13(593)2021 05 12.
Article in English | MEDLINE | ID: mdl-33820835

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) poses a public health threat for which preventive and therapeutic agents are urgently needed. Neutralizing antibodies are a key class of therapeutics that may bridge widespread vaccination campaigns and offer a treatment solution in populations less responsive to vaccination. Here, we report that high-throughput microfluidic screening of antigen-specific B cells led to the identification of LY-CoV555 (also known as bamlanivimab), a potent anti-spike neutralizing antibody from a hospitalized, convalescent patient with coronavirus disease 2019 (COVID-19). Biochemical, structural, and functional characterization of LY-CoV555 revealed high-affinity binding to the receptor-binding domain, angiotensin-converting enzyme 2 binding inhibition, and potent neutralizing activity. A pharmacokinetic study of LY-CoV555 conducted in cynomolgus monkeys demonstrated a mean half-life of 13 days and a clearance of 0.22 ml hour-1 kg-1, consistent with a typical human therapeutic antibody. In a rhesus macaque challenge model, prophylactic doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract in samples collected through study day 6 after viral inoculation. This antibody has entered clinical testing and is being evaluated across a spectrum of COVID-19 indications, including prevention and treatment.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral/immunology , COVID-19 , Animals , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19/prevention & control , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
2.
bioRxiv ; 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33024963

ABSTRACT

SARS-CoV-2 poses a public health threat for which therapeutic agents are urgently needed. Herein, we report that high-throughput microfluidic screening of antigen-specific B-cells led to the identification of LY-CoV555, a potent anti-spike neutralizing antibody from a convalescent COVID-19 patient. Biochemical, structural, and functional characterization revealed high-affinity binding to the receptor-binding domain, ACE2 binding inhibition, and potent neutralizing activity. In a rhesus macaque challenge model, prophylaxis doses as low as 2.5 mg/kg reduced viral replication in the upper and lower respiratory tract. These data demonstrate that high-throughput screening can lead to the identification of a potent antiviral antibody that protects against SARS-CoV-2 infection. ONE SENTENCE SUMMARY: LY-CoV555, an anti-spike antibody derived from a convalescent COVID-19 patient, potently neutralizes SARS-CoV-2 and protects the upper and lower airways of non-human primates against SARS-CoV-2 infection.

3.
F1000Res ; 5: 1411, 2016.
Article in English | MEDLINE | ID: mdl-27703666

ABSTRACT

Droplet digital polymerase chain reaction (ddPCR) is a novel platform for exact quantification of DNA which holds great promise in clinical diagnostics. It is increasingly popular due to its digital nature, which provides more accurate quantification and higher sensitivity than traditional real-time PCR. However, clinical adoption has been slowed in part by the lack of software tools available for analyzing ddPCR data. Here, we present ddpcr - a new R package for ddPCR visualization and analysis. In addition, ddpcr includes a web application (powered by the Shiny R package) that allows users to analyze ddPCR data using an interactive graphical interface.

4.
J Mol Diagn ; 18(2): 190-204, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26762843

ABSTRACT

A need exists for robust and cost-effective assays to detect a single or small set of actionable point mutations, or a complete set of clinically informative mutant alleles. Knowledge of these mutations can be used to alert the clinician to a rare mutation that might necessitate more aggressive clinical monitoring or a personalized course of treatment. An example is BRAF, a (proto)oncogene susceptible to either common or rare mutations in codon V600 and adjacent codons. We report a diagnostic technology that leverages the unique capabilities of droplet digital PCR to achieve not only accurate and sensitive detection of BRAF(V600E) but also all known somatic point mutations within the BRAF V600 codon. The simple and inexpensive two-well droplet digital PCR assay uses a chimeric locked nucleic acid/DNA probe against wild-type BRAF and a novel wild-type-negative screening paradigm. The assay shows complete diagnostic accuracy when applied to formalin-fixed, paraffin-embedded tumor specimens from metastatic colorectal cancer patients deficient for Mut L homologue-1.


Subject(s)
Colorectal Neoplasms/genetics , DNA Mutational Analysis/methods , Polymerase Chain Reaction/methods , Proto-Oncogene Proteins B-raf/genetics , Alleles , Cell Line, Tumor , Colorectal Neoplasms/pathology , DNA Probes , Humans , Limit of Detection , Paraffin Embedding , Plasmids , Point Mutation , Polymerase Chain Reaction/standards , Proto-Oncogene Mas , Workflow
5.
Biochemistry ; 54(6): 1338-52, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25654628

ABSTRACT

Advances in real-time polymerase chain reaction (PCR), as well as the emergence of digital PCR (dPCR) and useful modified nucleotide chemistries, including locked nucleic acids (LNAs), have created the potential to improve and expand clinical applications of PCR through their ability to better quantify and differentiate amplification products, but fully realizing this potential will require robust methods for designing dual-labeled hydrolysis probes and predicting their hybridization thermodynamics as a function of their sequence, chemistry, and template complementarity. We present here a nearest-neighbor thermodynamic model that accurately predicts the melting thermodynamics of a short oligonucleotide duplexed either to its perfect complement or to a template containing mismatched base pairs. The model may be applied to pure-DNA duplexes or to duplexes for which one strand contains any number and pattern of LNA substitutions. Perturbations to duplex stability arising from mismatched DNA:DNA or LNA:DNA base pairs are treated at the Gibbs energy level to maintain statistical significance in the regressed model parameters. This approach, when combined with the model's accounting of the temperature dependencies of the melting enthalpy and entropy, permits accurate prediction of T(m) values for pure-DNA homoduplexes or LNA-substituted heteroduplexes containing one or two independent mismatched base pairs. Terms accounting for changes in solution conditions and terminal addition of fluorescent dyes and quenchers are then introduced so that the model may be used to accurately predict and thereby tailor the T(m) of a pure-DNA or LNA-substituted hydrolysis probe when duplexed either to its perfect-match template or to a template harboring a noncomplementary base. The model, which builds on classic nearest-neighbor thermodynamics, should therefore be of use to clinicians and biologists who require probes that distinguish and quantify two closely related alleles in either a quantitative PCR or dPCR assay. This potential is demonstrated by using the model to design allele-specific probes that completely discriminate and quantify clinically relevant mutant alleles (BRAF V600E and KIT D816V) in a dPCR assay.


Subject(s)
Models, Theoretical , Molecular Probes , Mutation , Oligonucleotides/chemistry , Polymerase Chain Reaction/methods , Thermodynamics
6.
J Immunol ; 182(10): 6550-61, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19414810

ABSTRACT

The selectin family of adhesion molecules mediates the recruitment of immune cells to the site of inflammation, which is critical for host survival of infection. To characterize the role of selectins in host defense against Salmonella Typhimurium infection, wild-type (WT) mice and mice lacking P-selectin glycoprotein ligand-1 (PSGL-1), P-, E-, or L-selectin, or the glycosyltransferase C2GlcNAcT-I (core 2) were infected using a Salmonella acute gastroenteritis model. Mice were monitored for survival and assessed for intestinal inflammation at 1 and 4 days postinfection. Infected mice lacking core 2, PSGL-1, or P-selectin showed a more pronounced morbidity and a significantly higher mortality rate associated with higher bacterial load and proinflammatory cytokine production, including that of TNF-alpha, MCP-1, and IL-6, from the colons at 4 days postinfection as compared with WT control. Surprisingly, at 1 day postinfection, more severe inflammation and higher neutrophil infiltration were observed in the ceca of mice lacking core 2, PSGL-1, or P-selectin compared with WT control. Enhanced levels of alpha(4)beta(7)(+) and MAdCAM-1(+) cells were observed in the ceca of infected mice lacking core 2, PSGL-1, or P-selectin. Neutrophil recruitment, cecal inflammation, and mortality rates were dramatically reduced in infected P-selectin knockout mice receiving blocking mAb to alpha(4)beta(7) integrin, indicating that this alternative adhesion molecule may attempt to compensate for the loss of selectins in neutrophil recruitment. These results demonstrate a definitive phenotypic abnormality in mice lacking core 2, PSGL-1, or P-selectin, suggesting that the interaction of functional PSGL-1 with P-selectin is an important process in host defense against Salmonella infection.


Subject(s)
Enterocolitis/immunology , Membrane Glycoproteins/deficiency , Salmonella Infections, Animal/immunology , Animals , Cytokines/immunology , Cytokines/metabolism , E-Selectin/genetics , E-Selectin/immunology , E-Selectin/metabolism , Enterocolitis/genetics , Enterocolitis/pathology , L-Selectin/genetics , L-Selectin/immunology , L-Selectin/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , N-Acetylglucosaminyltransferases/deficiency , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/immunology , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , P-Selectin/genetics , P-Selectin/immunology , P-Selectin/metabolism , Salmonella Infections, Animal/genetics , Salmonella Infections, Animal/pathology , Salmonella typhimurium
SELECTION OF CITATIONS
SEARCH DETAIL
...