Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(3): e2306734, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37843433

ABSTRACT

Side reactions on zinc metal (Zn) anodes are formidable issues that cause limited battery life of aqueous zinc-ion batteries (AZIBs). Here, a facile and controllable layer-by-layer (LbL) self-assembly technique is deployed to construct an ion-conductive and mechanically robust electrolyte/anode interface for stabilizing the Zn anode. The LbL film consists of two natural and biodegradable bio-macromolecules, chitosan (CS) and sodium alginate (SA). It is shown that such an LbL film tailors the solvation sheath of Zn ions and facilitates the oriented deposition of Zn. Symmetric cells with the four double layers of CS/SA ((CS/SA)4 -Zn) exhibit stable cycles for over 6500 h. The (CS/SA)4 -Zn||H2 V3 O8 coin cell maintains a specific capacity of 125.5 mAh g-1 after 14 000 cycles. The pouch cell with an electrode area of 5 × 7 cm2 also presents a capacity retention of 83% for over 500 cycles at 0.1 A g-1 . No obvious dendrites are observed after long cycles in both symmetric and full cells. Given the cost-effective material and fabrication, and environmental friendliness of the LbL films, this Zn protection strategy may boost the industrial application of AZIBs.

2.
Adv Mater ; 34(43): e2207209, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36065756

ABSTRACT

The poor stability of the zinc-metal anode is a main bottleneck for practical application of aqueous zinc-ion batteries. Herein, a series of molecular sieves with various channel sizes are investigated as an electrolyte host to regulate the ionic environment of Zn2+ on the surface of the zinc anode and to realize separator-free batteries. Based on the ZSM-5 molecular sieve, a solid-liquid mixed electrolyte membrane is constructed to uniformize the transport of zinc ions and foster dendrite-free Zn deposition. Side reactions can also be suppressed through tailoring the solvation sheath and restraining the activity of water molecules in electrolyte. A V2 O5 ||ZSM-5||Zn full cell shows significantly enhanced performance compared to cells using glass fiber separator. Specifically, it exhibits a high specific capacity of 300 mAh g-1 , and a capacity retention of 98.67% after 1000 cycles and 82.67% after 3000 cycles at 1 A g-1 . It is attested that zeolites (ZSM-5, H-ß, and Bate) with channel sizes of 5-7 Å result in best cycle stability. Given the low cost and recyclability of the ZSM and its potent function, this work may further lower the cost and boost the industrial application of AZIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...