Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Chem ; 281(28): 19578-87, 2006 Jul 14.
Article in English | MEDLINE | ID: mdl-16672228

ABSTRACT

Mammalian vascular endothelial growth factors constitute a family of polypeptides, vascular endothelial growth factor (VEGF)-A, -B, -C, -D and placenta growth factor (PlGF), that regulate blood and lymphatic vessel development. VEGFs bind to three types of receptor tyrosine kinases, VEGF receptors 1, 2, and 3, that are predominantly expressed on endothelial and some hematopoietic cells. Pox viruses of the Orf family encode highly related proteins called VEGF-E that show only 25-35% amino acid identity with VEGF-A but bind with comparable affinity to VEGFR-2. The crystal structure of VEGF-E NZ2 described here reveals high similarity to the known structural homologs VEGF-A, PlGF, and the snake venoms Vammin and VR-1, which are all homodimers and contain the characteristic cysteine knot motif. Distinct conformational differences are observed in loop L1 and particularly in L3, which contains a highly flexible GS-rich motif that differs from all other structural homologs. Based on our structure, we created chimeric proteins by exchanging selected segments in L1 and L3 with the corresponding sequences from PlGF. Single loop mutants did not bind to either receptor, whereas a VEGF-E mutant in which both L1 and L3 were replaced gained affinity for VEGFR-1, illustrating the possibility to engineer receptor-specific chimeric VEGF molecules. In addition, changing arginine 46 to isoleucine in L1 significantly increased the affinity of VEGF-E for both VEGF receptors.


Subject(s)
Orf virus/metabolism , Viral Proteins/chemistry , Amino Acid Sequence , Binding, Competitive , Cell-Free System , Crystallography, X-Ray , Dimerization , Models, Molecular , Molecular Sequence Data , Protein Conformation , Protein Engineering , Recombinant Fusion Proteins/chemistry , Sequence Homology, Amino Acid , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL