Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2400192, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38518808

ABSTRACT

Microphysiological and organ-on-chip platforms seek to address critical gaps in human disease models and drug development that underlie poor rates of clinical success for novel interventions. While the fabrication technology and model cells used to synthesize organs-on-chip have advanced considerably, most platforms rely on animal-derived or synthetic extracellular matrix as a cell substrate, limiting mimicry of human physiology and precluding use in modeling diseases in which matrix dynamics play a role in pathogenesis. Here, the development of human cell-derived matrix (hCDM) composite hydrogels for use in 3D microphysiologic models of the vasculature is reported. hCDM composite hydrogels are derived from human donor fibroblasts and maintain a complex milieu of basement membrane, proteoglycans, and nonfibrillar matrix components. The use of hCDM composite hydrogels as 2D and 3D cell culture substrates is demonstrated, and hCDM composite hydrogels are patterned to form engineered human microvessels. Interestingly, hCDM composite hydrogels are enriched in proteins associated with vascular morphogenesis as determined by mass spectrometry, and functional analysis demonstrates proangiogenic signatures in human endothelial cells cultured in these hydrogels. In conclusion, this study suggests that human donor-derived hCDM composite hydrogels could address technical gaps in human organs-on-chip development and serve as substrates to promote vascularization.

2.
Bioengineering (Basel) ; 10(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37237672

ABSTRACT

The vocal folds (VFs) are constantly exposed to mechanical stimulation leading to changes in biomechanical properties, structure, and composition. The development of long-term strategies for VF treatment depends on the characterization of related cells, biomaterials, or engineered tissues in a controlled mechanical environment. Our aim was to design, develop, and characterize a scalable and high-throughput platform that mimics the mechanical microenvironment of the VFs in vitro. The platform consists of a 24-well plate fitted with a flexible membrane atop a waveguide equipped with piezoelectric speakers which allows for cells to be exposed to various phonatory stimuli. The displacements of the flexible membrane were characterized via Laser Doppler Vibrometry (LDV). Human VF fibroblasts and mesenchymal stem cells were seeded, exposed to various vibratory regimes, and the expression of pro-fibrotic and pro-inflammatory genes was analyzed. Compared to current bioreactor designs, the platform developed in this study can incorporate commercial assay formats ranging from 6- to 96-well plates which represents a significant improvement in scalability. This platform is modular and allows for tunable frequency regimes.

3.
Biomater Sci ; 11(2): 641-654, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36504129

ABSTRACT

The goal of tissue decellularization is to efficiently remove unwanted cellular components, such as DNA and cellular debris, while retaining the complex structural and molecular milieu within the extracellular matrix (ECM). Decellularization protocols to date are centered on customized tissue-specific and lab-specific protocols that involve consecutive manual steps which results in variable and protocol-specific ECM material. The differences that result from the inconsistent protocols between decellularized ECMs affect consistency across batches, limit comparisons between results obtained from different laboratories, and could limit the transferability of the material for consistent laboratory or clinical use. The present study is the first proof-of-concept towards the development of a standardized protocol that can be used to derive multiple ECM biomaterials (powders and hydrogels) via a previously established automated system. The automated decellularization method developed by our group was used due to its short decellularization time (4 hours) and its ability to reduce batch-to-batch variability. The ECM obtained using this first iteration of a unified protocol was able to produce ECM hydrogels from skin, lung, muscle, tendons, cartilage, and laryngeal tissues. All hydrogels formed in this study were cytocompatible and showed gelation and rheological properties consistent with previous ECM hydrogels. The ECMs also showed unique proteomic composition. The present study represents the first step towards developing standardized protocols that can be used on multiple tissues in a fast, scalable, and reproducible manner.


Subject(s)
Proteomics , Tissue Engineering , Tissue Engineering/methods , Extracellular Matrix/chemistry , Hydrogels/chemistry , Biocompatible Materials/analysis , Tissue Scaffolds
4.
Tissue Eng Part B Rev ; 28(1): 182-205, 2022 02.
Article in English | MEDLINE | ID: mdl-33446061

ABSTRACT

It is estimated that almost one-third of the United States population will be affected by a vocal fold (VF) disorder during their lifespan. Promising therapies to treat VF injury and scarring are mostly centered on VF tissue engineering strategies such as the injection of engineered biomaterials and cell therapy. VF tissue engineering, however, is a challenging field as the biomechanical properties, structure, and composition of the VF tissue change upon exposure to mechanical stimulation. As a result, the development of long-term VF treatment strategies relies on the characterization of engineered tissues under a controlled mechanical environment. In this review, we highlight the importance of bioreactors as a powerful tool for VF tissue engineering with a focus on the current state of the art of bioreactors designed to mimic phonation in vitro. We discuss the influence of the phonatory environment on the development, function, injury, and healing of the VF tissue and its importance for the development of efficient therapeutic strategies. A concise and comprehensive overview of bioreactor designs, principles, operating parameters, and scalability are presented. An in-depth analysis of VF bioreactor data to date reveals that mechanical stimulation significantly influences cell viability and the expression of proinflammatory and profibrotic genes in vitro. Although the precision and accuracy of bioreactors contribute to generating reliable results, diverse gene expression profiles across the literature suggest that future efforts should focus on the standardization of bioreactor parameters to enable direct comparisons between studies. Impact statement We present a comprehensive review of bioreactors for vocal fold (VF) tissue engineering with a focus on the influence of the phonatory environment on the development, function, injury, and healing of the VFs and the importance of mimicking phonation on engineered VF tissues in vitro. Furthermore, we put forward a strong argument for the continued development of bioreactors in this area with an emphasis on the standardization of bioreactor designs, principles, operating parameters, and oscillatory regimes to enable comparisons between studies.


Subject(s)
Tissue Engineering , Vocal Cords , Biocompatible Materials , Bioreactors , Cicatrix , Humans , Tissue Engineering/methods , Vocal Cords/pathology , Vocal Cords/physiology
5.
Tissue Eng Part A ; 27(15-16): 1008-1022, 2021 08.
Article in English | MEDLINE | ID: mdl-33003982

ABSTRACT

Mast cells (MCs) are pro-inflammatory tissue-resident immune cells that play a key role in inflammation. MCs circulate in peripheral blood as progenitors and undergo terminal differentiation in the tissue microenvironment where they can remain for many years. This in situ maturation results in tissue- and species-specific MC phenotypes, culminating in significant variability in response to environmental stimuli. There are many challenges associated with studying mature tissue-derived MCs, particularly in humans. In cases where cultured MCs are able to differentiate in two-dimensional in vitro cultures, there remains an inability for full maturation. Extracellular matrix (ECM) scaffolds provide for a more physiologically relevant environment for cells in vitro and have been shown to modulate the response of other immune cells such as T cells, monocytes, and macrophages. To improve current in vitro testing platforms of MCs and to assess future use of ECM scaffolds for MC regulation, we studied the in vitro response of human MCs cultured on decellularized porcine dermis hydrogels (dermis extracellular matrix hydrogel [dECM-H]). This study investigated the effect of dECM-H on cellular metabolic activity, cell viability, and receptor expression compared to collagen type I hydrogel (Collagen-H). Human MCs showed different metabolic activity when cultured in the dECM-H and also upregulated immunoglobulin E (IgE) receptors associated with MC maturation/activation compared to collagen type I. These results suggest an overall benefit in the long-term culture of human MCs in the dECM-H compared to Collagen-H providing important steps toward a model that is more representative of in vivo conditions. Graphical abstract [Formula: see text] Impact statement Mast cells (MCs) are difficult to culture in vitro as current culture conditions and substrates fail to promote similar phenotypic features observed in vivo. Extracellular matrix (ECM)-based biomaterials offer three-dimensional, tissue-specific environments that more closely resemble in vivo conditions. Our study explores the use of dermal ECM hydrogels for MC culture and shows significant upregulation of metabolic activity, cell viability, and gene expression of markers associated with MC maturation or activation compared to collagen type I-hydrogel and tissue culture plastic controls at 7 days. These results are among the first to describe MC behavior in response to ECM hydrogels.


Subject(s)
Extracellular Matrix , Mast Cells , Animals , Cell Differentiation , Collagen , Humans , Hydrogels , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...