Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 3(1)2012.
Article in English | MEDLINE | ID: mdl-22334516

ABSTRACT

UNLABELLED: Ancient endosymbionts have been associated with extreme genome structural stability with little differentiation in gene inventory between sister species. Tsetse flies (Diptera: Glossinidae) harbor an obligate endosymbiont, Wigglesworthia, which has coevolved with the Glossina radiation. We report on the ~720-kb Wigglesworthia genome and its associated plasmid from Glossina morsitans morsitans and compare them to those of the symbiont from Glossina brevipalpis. While there was overall high synteny between the two genomes, a large inversion was noted. Furthermore, symbiont transcriptional analyses demonstrated host tissue and development-specific gene expression supporting robust transcriptional regulation in Wigglesworthia, an unprecedented observation in other obligate mutualist endosymbionts. Expression and immunohistochemistry confirmed the role of flagella during the vertical transmission process from mother to intrauterine progeny. The expression of nutrient provisioning genes (thiC and hemH) suggests that Wigglesworthia may function in dietary supplementation tailored toward host development. Furthermore, despite extensive conservation, unique genes were identified within both symbiont genomes that may result in distinct metabolomes impacting host physiology. One of these differences involves the chorismate, phenylalanine, and folate biosynthetic pathways, which are uniquely present in Wigglesworthia morsitans. Interestingly, African trypanosomes are auxotrophs for phenylalanine and folate and salvage both exogenously. It is possible that W. morsitans contributes to the higher parasite susceptibility of its host species. IMPORTANCE: Genomic stasis has historically been associated with obligate endosymbionts and their sister species. Here we characterize the Wigglesworthia genome of the tsetse fly species Glossina morsitans and compare it to its sister genome within G. brevipalpis. The similarity and variation between the genomes enabled specific hypotheses regarding functional biology. Expression analyses indicate significant levels of transcriptional regulation and support development- and tissue-specific functional roles for the symbiosis previously not observed in obligate mutualist symbionts. Retention of the genetically expensive flagella within these small genomes was demonstrated to be significant in symbiont transmission and tailored to the unique tsetse fly reproductive biology. Distinctions in metabolomes were also observed. We speculate an additional role for Wigglesworthia symbiosis where infections with pathogenic trypanosomes may depend upon symbiont species-specific metabolic products and thus influence the vector competence traits of different tsetse fly host species.


Subject(s)
Genome, Bacterial , Genome, Insect , Symbiosis , Tsetse Flies/microbiology , Wigglesworthia/physiology , Amino Acid Sequence , Animals , Chorismic Acid/biosynthesis , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Evolution, Molecular , Flagella/genetics , Flagella/metabolism , Folic Acid/biosynthesis , Gene Expression Regulation, Bacterial , Immunohistochemistry , Inheritance Patterns , Molecular Sequence Data , Phenylalanine/biosynthesis , Plasmids/genetics , Plasmids/metabolism , Species Specificity , Synteny , Transcription, Genetic , Tsetse Flies/genetics , Tsetse Flies/metabolism , Wigglesworthia/genetics , Wigglesworthia/metabolism
2.
J Bacteriol ; 193(8): 2076-7, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21217001

ABSTRACT

Dickeya dadantii is a plant-pathogenic enterobacterium responsible for the soft rot disease of many plants of economic importance. We present here the sequence of strain 3937, a strain widely used as a model system for research on the molecular biology and pathogenicity of this group of bacteria.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Enterobacteriaceae/genetics , Genome, Bacterial , Enterobacteriaceae/isolation & purification , Molecular Sequence Data , Plant Diseases/microbiology , Plants/microbiology , Sequence Analysis, DNA
3.
Environ Microbiol ; 12(6): 1604-20, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20370821

ABSTRACT

Pseudomonas savastanoi pv. savastanoi is a tumour-inducing pathogen of Olea europaea L. causing olive knot disease. Bioinformatic analysis of the draft genome sequence of strain NCPPB 3335, which encodes 5232 predicted coding genes on a total length of 5856 998 bp and a 57.12% G + C, revealed a large degree of conservation with Pseudomonas syringae pv. phaseolicola 1448A and P. syringae pv. tabaci 11528. However, NCPPB 3335 contains twelve variable genomic regions, which are absent in all previously sequenced P. syringae strains. Various features that could contribute to the ability of this strain to survive in a woody host were identified, including broad catabolic and transport capabilities for degrading plant-derived aromatic compounds, the duplication of sequences related to the biosynthesis of the phytohormone indoleacetic acid (iaaM, iaaH) and its amino acid conjugate indoleacetic acid-lysine (iaaL gene), and the repertoire of strain-specific putative type III secretion system effectors. Access to this seventh genome sequence belonging to the 'P. syringae complex' allowed us to identify 73 predicted coding genes that are NCPPB 3335-specific. Results shown here provide the basis for detailed functional analysis of a tumour-inducing pathogen of woody hosts and for the study of specific adaptations of a P. savastanoi pathovar.


Subject(s)
Genome, Bacterial , Plant Tumors/microbiology , Pseudomonas/genetics , Pseudomonas/pathogenicity , Virulence/genetics , Indoleacetic Acids/metabolism , Interspersed Repetitive Sequences , Molecular Sequence Data , Olea/microbiology , Phylogeny , Pseudomonas/classification , Pseudomonas/metabolism
4.
Bioinformatics ; 25(16): 2071-3, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19515959

ABSTRACT

SUMMARY: Mauve Contig Mover provides a new method for proposing the relative order of contigs that make up a draft genome based on comparison to a complete or draft reference genome. A novel application of the Mauve aligner and viewer provides an automated reordering algorithm coupled with a powerful drill-down display allowing detailed exploration of results. AVAILABILITY: The software is available for download at http://gel.ahabs.wisc.edu/mauve.


Subject(s)
Algorithms , Contig Mapping , Genome , Sequence Alignment/methods , Software , Sequence Analysis, DNA/methods
5.
BMC Microbiol ; 9 Suppl 1: S4, 2009 Feb 19.
Article in English | MEDLINE | ID: mdl-19278552

ABSTRACT

Genome-informed identification and characterization of Type III effector repertoires in various bacterial strains and species is revealing important insights into the critical roles that these proteins play in the pathogenic strategies of diverse bacteria. However, non-systematic discipline-specific approaches to their annotation impede analysis of the accumulating wealth of data and inhibit easy communication of findings among researchers working on different experimental systems. The development of Gene Ontology (GO) terms to capture biological processes occurring during the interaction between organisms creates a common language that facilitates cross-genome analyses. The application of these terms to annotate type III effector genes in different bacterial species - the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic strains of Escherichia coli - illustrates how GO can effectively describe fundamental similarities and differences among different gene products deployed as part of diverse pathogenic strategies. In depth descriptions of the GO annotations for P. syringae pv tomato DC3000 effector AvrPtoB and the E. coli effector Tir are described, with special emphasis given to GO capability for capturing information about interacting proteins and taxa. GO-highlighted similarities in biological process and molecular function for effectors from additional pathosystems are also discussed.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli O157/metabolism , Pseudomonas syringae/metabolism , Terminology as Topic , Escherichia coli O157/genetics , Escherichia coli O157/pathogenicity , Host-Pathogen Interactions , Plant Diseases/microbiology , Pseudomonas syringae/genetics , Pseudomonas syringae/pathogenicity , Vocabulary, Controlled
6.
Nucleic Acids Res ; 36(Database issue): D519-23, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17999997

ABSTRACT

ERIC, the Enteropathogen Resource Integration Center (www.ericbrc.org), is a new web portal serving as a rich source of information about enterobacteria on the NIAID established list of Select Agents related to biodefense-diarrheagenic Escherichia coli, Shigella spp., Salmonella spp., Yersinia enterocolitica and Yersinia pestis. More than 30 genomes have been completely sequenced, many more exist in draft form and additional projects are underway. These organisms are increasingly the focus of studies using high-throughput experimental technologies and computational approaches. This wealth of data provides unprecedented opportunities for understanding the workings of basic biological systems and discovery of novel targets for development of vaccines, diagnostics and therapeutics. ERIC brings information together from disparate sources and supports data comparison across different organisms, analysis of varying data types and visualization of analyses in human and computer-readable formats.


Subject(s)
Databases, Genetic , Enterobacteriaceae/genetics , Genome, Bacterial , Bacterial Proteins/chemistry , Bacterial Proteins/classification , Bacterial Proteins/genetics , Biomedical Research , Bioterrorism , Computational Biology , DNA Transposable Elements , Enterobacteriaceae Infections/diagnosis , Enterobacteriaceae Infections/prevention & control , Enterobacteriaceae Infections/therapy , Genomics , Internet , Oligonucleotide Array Sequence Analysis , Proteomics , Sequence Alignment , Software , Systems Integration
7.
Genetics ; 176(2): 1237-44, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17435219

ABSTRACT

The Apc(Min) mouse model of colorectal cancer provides a discrete, quantitative measurement of tumor multiplicity, allowing for robust quantitative trait locus analysis. This advantage has previously been used to uncover polymorphic modifiers of the Min phenotype: Mom1, which is partly explained by Pla2g2a; Mom2, a spontaneous mutant modifier; and Mom3, which was discovered in an outbred cross. Here, we describe the localization of a novel modifier, Mom7, to the pericentromeric region of chromosome 18. Mom7 was mapped in crosses involving four inbred strains: C57BL/6J (B6), BTBR/Pas (BTBR), AKR/J (AKR), and A/J. There are at least two distinct alleles of Mom7: the recessive, enhancing BTBR, AKR, and A/J alleles and the dominant, suppressive B6 allele. Homozygosity for the enhancing alleles increases tumor number by approximately threefold in the small intestine on both inbred and F(1) backgrounds. Congenic line analysis has narrowed the Mom7 region to within 7.4 Mb of the centromere, 28 Mb proximal to Apc. Analysis of SNP data from various genotyping projects suggests that the region could be as small as 4.4 Mb and that there may be five or more alleles of Mom7 segregating among the many strains of inbred mice. This has implications for experiments involving Apc(Min) and comparisons between different or mixed genetic backgrounds.


Subject(s)
Chromosome Mapping , Proteins/genetics , Animals , Colorectal Neoplasms/genetics , Crosses, Genetic , Female , Genes, APC , Genes, Recessive , Loss of Heterozygosity , Male , Mice , Mice, Inbred AKR , Mice, Inbred C57BL , Mutation , Polymorphism, Single Nucleotide
8.
BMC Genomics ; 7: 91, 2006 Apr 25.
Article in English | MEDLINE | ID: mdl-16638145

ABSTRACT

BACKGROUND: Comparative genomic hybridization can rapidly identify chromosomal regions that vary between organisms and tissues. This technique has been applied to detecting differences between normal and cancerous tissues in eukaryotes as well as genomic variability in microbial strains and species. The density of oligonucleotide probes available on current microarray platforms is particularly well-suited for comparisons of organisms with smaller genomes like bacteria and yeast where an entire genome can be assayed on a single microarray with high resolution. Available methods for analyzing these experiments typically confine analyses to data from pre-defined annotated genome features, such as entire genes. Many of these methods are ill suited for datasets with the number of measurements typical of high-density microarrays. RESULTS: We present an algorithm for analyzing microarray hybridization data to aid identification of regions that vary between an unsequenced genome and a sequenced reference genome. The program, CGHScan, uses an iterative random walk approach integrating multi-layered significance testing to detect these regions from comparative genomic hybridization data. The algorithm tolerates a high level of noise in measurements of individual probe intensities and is relatively insensitive to the choice of method for normalizing probe intensity values and identifying probes that differ between samples. When applied to comparative genomic hybridization data from a published experiment, CGHScan identified eight of nine known deletions in a Brucella ovis strain as compared to Brucella melitensis. The same result was obtained using two different normalization methods and two different scores to classify data for individual probes as representing conserved or variable genomic regions. The undetected region is a small (58 base pair) deletion that is below the resolution of CGHScan given the array design employed in the study. CONCLUSION: CGHScan is an effective tool for analyzing comparative genomic hybridization data from high-density microarrays. The algorithm is capable of accurately identifying known variable regions and is tolerant of high noise and varying methods of data preprocessing. Statistical analysis is used to define each variable region providing a robust and reliable method for rapid identification of genomic differences independent of annotated gene boundaries.


Subject(s)
Algorithms , Genetic Variation , Genomics/methods , Oligonucleotide Array Sequence Analysis/methods , Brucella melitensis/genetics , Brucella ovis/genetics , Chromosome Deletion , Genome, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...