Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Gastrointest Cancer ; 53(4): 948-957, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34559362

ABSTRACT

PURPOSE: Early detection of adenocarcinomas in the esophagus is crucial for achieving curative endoscopic therapy. Targeted biopsies of suspicious lesions, as well as four-quadrant biopsies, represent the current diagnostic standard. However, this procedure is time-consuming, cost-intensive, and examiner-dependent. The aim of this study was to test whether impedance spectroscopy is capable of distinguishing between healthy, premalignant, and malignant lesions. An ex vivo measurement method was developed to examine esophageal lesions using impedance spectroscopy immediately after endoscopic resection. METHODS: After endoscopic resection of suspicious lesions in the esophagus, impedance measurements were performed on resected cork-covered tissue using a measuring head that was developed, with eight gold electrodes, over 10 different measurement settings and with frequencies from 100 Hz to 1 MHz. RESULTS: A total of 105 measurements were performed in 60 patients. A dataset of 400 per investigation and a total of more than 42,000 impedance measurements were therefore collected. Electrical impedance spectroscopy (EIS) was able to detect dysplastic esophageal mucosa with a sensitivity of 81% in Barrett's esophagus. CONCLUSION: In summary, EIS was able to distinguish different tissue characteristics in the different esophageal tissues. EIS thus holds potential for further development of targeted biopsies during surveillance endoscopy. Trial Registration NCT04046601.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Humans , Adenocarcinoma/diagnosis , Adenocarcinoma/surgery , Adenocarcinoma/pathology , Barrett Esophagus/diagnosis , Barrett Esophagus/surgery , Barrett Esophagus/pathology , Biopsy/methods , Dielectric Spectroscopy , Esophageal Neoplasms/diagnosis , Esophageal Neoplasms/surgery , Esophageal Neoplasms/pathology , Esophagoscopy/methods
3.
J Exp Orthop ; 8(1): 39, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34115238

ABSTRACT

PURPOSE: Despite practised for decades, the planning of osteotomy around the knee, commonly using the Mikulicz-Line, is only empirically based, clinical outcome inconsistent and the target angle still controversial. A better target than the angle of frontal-plane static leg alignment might be the external frontal-plane lever arm (EFL) of the knee adduction moment. Hypothetically assessable from frontal-plane-radiograph skeleton dimensions, it might depend on the leg-alignment angle, the hip-centre-to-hip-centre distance, the femur- and tibia-length. METHODS: The target EFL to achieve a medial compartment force ratio of 50% during level-walking was identified by relating in-vivo-measurement data of knee-internal loads from nine subjects with instrumented prostheses to the same subjects' EFLs computed from frontal-plane skeleton dimensions. Adduction moments derived from these calculated EFLs were compared to the subjects' adduction moments measured during gait analysis. RESULTS: Highly significant relationships (0.88 ≤ R2 ≤ 0.90) were found for both the peak adduction moment measured during gait analysis and the medial compartment force ratio measured in vivo to EFL calculated from frontal-plane skeleton dimensions. Both correlations exceed the respective correlations with the leg alignment angle, EFL even predicts the adduction moment's first peak. The guideline EFL for planning osteotomy was identified to 0.349 times the epicondyle distance, hence deducing formulas for individualized target angles and Mikulicz-Line positions based on full-leg radiograph skeleton dimensions. Applied to realistic skeleton geometries, widespread results explain the inconsistency regarding correction recommendations, whereas results for average geometries exactly meet the most-consented "Fujisawa-Point". CONCLUSION: Osteotomy outcome might be improved by planning re-alignment based on the provided formulas exploiting full-leg-radiograph skeleton dimensions.

4.
Small ; 17(15): e2006012, 2021 04.
Article in English | MEDLINE | ID: mdl-33458959

ABSTRACT

Microfluidic technology is a valuable tool for realizing more in vitro models capturing cellular and organ level responses for rapid and animal-free risk assessment of new chemicals and drugs. Microfluidic cell-based devices allow high-throughput screening and flexible automation while lowering costs and reagent consumption due to their miniaturization. There is a growing need for faster and animal-free approaches for drug development and safety assessment of chemicals (Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH). The work presented describes a microfluidic platform for in vivo-like in vitro cell cultivation. It is equipped with a wafer-based silicon chip including integrated electrodes and a microcavity. A proof-of-concept using different relevant cell models shows its suitability for label-free assessment of cytotoxic effects. A miniaturized microscope within each module monitors cell morphology and proliferation. Electrodes integrated in the microfluidic channels allow the noninvasive monitoring of barrier integrity followed by a label-free assessment of cytotoxic effects. Each microfluidic cell cultivation module can be operated individually or be interconnected in a flexible way. The interconnection of the different modules aims at simulation of the whole-body exposure and response and can contribute to the replacement of animal testing in risk assessment studies in compliance with the 3Rs to replace, reduce, and refine animal experiments.


Subject(s)
Microfluidic Analytical Techniques , Pharmaceutical Preparations , Animals , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Lab-On-A-Chip Devices , Microfluidics
SELECTION OF CITATIONS
SEARCH DETAIL
...